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LDA vs. Localized Electrons

� LDA/GGA has problems with strongly correlated systems
� localized orbitals (3d,4f )

  explicitly add “Coulomb interaction”

1 LDA+U, EECE: add orbital-dependent potentials to LDA
� insulators

2 DMFT: build many-body theory on top of LDA
� correlated metals
� partially-filled bands
� Wannier functions as basis



The Hubbard Model
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single-band Hubbard model:
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∑
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� “hopping” t (kinetic energy)

� interaction U

multi-band generalization:
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often parametrized with: intra-orbital U,
inter-orbital V, Hund exchange J
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Strontium Vanadate SrVO
3

� correlated metal

� cubic perovskite
� VO6 octahedra

� isolated t12g manifold
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LDA + Coulomb Repulsion U (-orb)

� split states into
� “delocalized”   LDA
� “localized”   LDA+U (usually, d or f states)

� augment LDA with local orbital-dependent energy:

E = ELDA + 1
2U
∑

i 6=j
ninj − 1

2UN(N− 1)

mean-field Hubbard term
(multi-band)

bni → ni = 〈bni〉

double-counting correction
(LDA contains part of U)

[Anisimov et al., Phys. Rev. B 48, 16929 (1993)]



LDA+U: Effects

E = ELDA + 1
2U
∑

i 6=j
ninj − 1

2UN(N− 1)

� orbital energies εi =
∂E

∂ni
= εLDA

i
+U (1/2− ni)

⇒ unoccupied states ↑, occupied states ↓

� creates / enlarges gaps (  Mott insulators)

� breaks symmetries (  spin order, orbital order, . . . )



LDA+U: Practicalities

� conceptually simple, computationally cheap

� ambiguities in practice:

� U values?
  constrained LDA [Madsen and Novák, wien2k.at]

� enforce occupation of target orbital
� U ∼∆Etot

� double-counting correction
0 “around mean-field”, 1

2UN(N− n̄) [Czyżyk and Sawatzky, PRB 1994]

metallic or less strongly correlated

1 “self-interaction correction”, 1
2UN(N− 1) [Anisimov et al., PRB 1993]

strongly correlated systems

2 “HMF” [Anisimov et al., PRB 1991]

http://www.wien2k.at/reg_user/textbooks/Constraint_U.pdf


LDA+U: Program Flow

� must be spin-polarized

lapwdm density matrix nij = 〈bnibnj〉
(case.dmatup,dn)

orb LDA+U potential
(case.vorbup,dn)

lapw1 -orb includes LDA+U potential

runsp -orb
lapw0
orb -up,dn
lapw1 -orb -up,dn
lapw2 -up,dn
lapwdm -up,dn
lcore -up,dn
mixer -orb

case.indm[c]
-9. Emin [Ry]
1 #atoms
2 1 2 atom, #l, l
0 0 mode

case.inorb
1 1 0 mode, #atoms, ipr
PRATT 1.0 mixing
2 1 2 atom, #l, l
1 double-counting

0.26 0.00 U,J [Ry] (Ueff=U-J)
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LDA+U: SrVO
3
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On-Site Hybrid Functionals (-eece)

� split states as in LDA+U → ρsel, Ψsel

� What’s in a name?
� “exact exchange for correlated electrons”
� on-site hybrid/Hartree-Fock vs. full hybrid

� augment LDA with local orbital-dependent energy:
� on-site hybrid

E = ELDA[ρ] + α
�

EHF
x [Ψsel]− ELDA

x [ρsel])

� on-site Hartree-Fock

E = ELDA[ρ] + α(EHF
x [Ψsel]− ELDA

xc [ρsel])

� must choose α; Exc[ρ] is not linear

[Novák et al. Phys. Stat. Sol. B 243, 563 (2006)]

[Tran, Blaha, Schwarz, and Novák, Phys. Rev. B 74, 155108 (2006)]



EECE: Program Flow

� must be spin-polarized

lapwdm density matrix nij = 〈bnibnj〉
(case.dmatup,dn)

lapw2, lapw0, orb EECE potential
(case.vorbup,dn)

lapw1 -orb includes EECE potential

runsp -eece
lapw0
lapw1 -orb -up,dn
lapw2 -up,dn
lcore -up,dn
lapwdm -up,dn
lapw2 -eece -up,dn
lapw0 -eece
orb -up,dn
mixer -eece

case.ineece
-9.0 1 Emin [Ry], #atoms
2 1 2 iatom nlorb lorb
HYBR HYBR/EECE mode
0.25 α

case.inorb, case.indm[c]
(generated automatically)
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EECE: SrVO
3
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Wannier Functions

from Marzari et al.

� Fourier transforms of
Bloch functions:

|wnR〉 = V
(2π)3

∫

BZ

dk eikR |ψnk〉

� “gauge” freedom:

|wnR〉 =

V
(2π)

∫

BZ

dk
∑

m

eikR Umn(k) |ψmk〉

  choose U(k) to
minimize spread 〈∆r2〉
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Maximally Localized Wannier Functions

� choose U(k) to minimize spread   MLWF

� total spread Ω = ΩI + eΩ can be split into
gauge-invariant part and rest

  minimize eΩ

� wannier90 computes U(k) in this way
[Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)]

http://wannier.org

� wien2wannier provides interface to Wien2k
[Kuneš, Wissgott et al., Comp. Phys. Commun. 181, 1888]

http://www.wien2k.at/reg_user/unsupported/wien2wannier/

http://wannier.org
http://www.wien2k.at/reg_user/unsupported/wien2wannier/


Disentanglement

from Marzari et al.

fcc-Cu, 5 d-like WF,
2 interstitial s-like WF

num_bands = 12
num_wann = 7

� other bands may cross
target manifold

  must select bands to
Wannierize

� V(k)
�

J(k)×N
�

� selection determines ΩI

  minimize also ΩI



MLWF: Applications

� analysis of chemical bonding

� electric polarization and orbital magnetization
  Oleg Rubel’s talk (tomorrow, 10:30)

� Wannier interpolation K→ G

H(k)|K
F−→ H(R)|K−1

F−1

−→ H(k)|G

� Wannier functions as basis functions
� tight-binding model H(k) = U+(k)ε(k)U(k)

  realistic dynamical mean-field theory (DMFT)



wannier90

case.win
num_bands = 3
num_wann = 3
num_iter = 1000
num_print_cycles = 100

dis_froz_min = 7.
dis_froz_max = 9.

bands_plot_project = 1

case.wout
Final State
WF centre and spread 1 ...
WF centre and spread 2 ...
WF centre and spread 3 ...
Sum of centres and spread ...

[Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)]
http://wannier.org

http://wannier.org


wien2wannier

case.w2win
BOTH
21 23 min band, max band
3 3 LJMAX, #Wannier functions

2 #terms
2 2 -2 0.00000000 0.70710677 atom, L, M, coeff
2 2 2 0.00000000 -0.70710677

2
2 2 -1 0.00000000 0.70710677
2 2 1 0.00000000 0.70710677

2
2 2 -1 0.70710677 0.00000000
2 2 1 -0.70710677 0.00000000

[Kuneš, Wissgott et al., Comp. Phys. Commun. 181, 1888]
http://www.wien2k.at/reg_user/unsupported/wien2wannier/

http://www.wien2k.at/reg_user/unsupported/wien2wannier/


MLWF: Program FLow

0 normal SCF run −→ converged density, band structure

1 prepare_w2wdir.sh, init_w2w: prepare input files

2 x lapw1 -options −→ eigenvectors on full k-mesh

3 w2w case −→ overlap 〈umk |unk〉

4 shift_energy case

5 wannier90.x case −→ U(k)



wien2wannier Features
� spin-polarized cases, spin-orbit coupling

� any functional, LAPW, APW+LO basis

� disentanglement

� plotting: interface to XCrysDen / VESTA

� woptic: optical conductivity with Wannier functions

σ(Ω) ∼
∑

k,ω

f(ω)−f(ω+Ω)
Ω tr

�

VA(k, ω+Ω)VA(k, ω)
	

� adaptive k-integration

� includes self-energy
(ω) (DMFT)

http://www.wien2k.at/reg_user/unsupported/wien2wannier/

[Wissgott, Kuneš et al. Phys. Rev. B 85, 205133]

http://www.wien2k.at/reg_user/unsupported/wien2wannier/


LDA+DMFT

LDA
� realistic calculations

� fails for strong correlations

model Hamiltonians
� simplified, abstract model

� full correlations

LDA+DMFT
⇒ realistic calculation including

most important correlation effects
Held, Adv. Phys. 56, 829 (2007)

Kotliar et al., Rev. Mod. Phys. 78, 865 (2006)
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Correlation Regimes

U: screened local interaction W: bandwidth, ∼ t



From lattice models to DMFT

t

U
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UU

U U

UU

lattice model
� e− hop between sites

� local repulsion (screened)

impurity model
� one interacting site

� non-interacting “bath”

dynamical mean-field theory

� lattice model 7→ impurity model

� self-energy (ω)
Georges et al., RMP 1996,
Kotliar & Vollhardt, Phys. Today 2004
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From lattice models to DMFT
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LDA+DMFT for SrVO
3

� DMFT basis: 3 degenerate t2g Wannier functions
� U = 5.05eV, T = 1160K

� DMFT(QMC) has finite T
� low T is hard (“sign problem”)

experiment: Makino et al., PRB 58, 4348 (1997)
DMFT: Philipp Wissgott



LDA+U, EECE, DMFT compared
LDA+U, EECE

� density functionals
� single-particle model

� good for insulators (U�W)

� work inside MT sphere
basis: Ym

l

� computationally cheap

� double counting

� semi-empirical U, α

LDA+DMFT

� “spectral density functional theory”

� many-body physics

� basis: Wannier functions
(or similar)

� whole U/W range

� sophisticated, expensive

� double counting

� semi-empirical U
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