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Few words about Special Theory of Relativity

Light
Composed of photons (MO MAss)

Speed of light = constant
]
Atomic units:
ﬁ - me = e = 1

v

c ~ 137 au




Few words about Special Theory of Relativity

Light Matter
Composed of photons (N0 MAss) Composed of atoms (MAsSs)
Speed of //:qlfl t = constant v =
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V mass = f(v)

c ~ 137 au



Few words about Special Theory of Relativity

Light Matter

Composed of photons (N0 MAss) Composed of atoms (MAsSs)

Speed of light = constant v = f(mass)

—
Atomic units: Speed af/—\
ﬁ - me - e - 1

matter \/

mass = f(v)

mass

c ~ 137 au

Lorentz Factor (measure of the relativistic effects)

1 1 Relativistic mass: M = ym (m: rest mass)
a v\ - Momentum: p = ymv = Mv
1_((:] Total energy: E? = p2c? + méc*

E = ymc? = Mc?



Speed of the 1s electron (Bohr model):

10

9 h " 0 "

g | «Non-relativistic »
2 | particle: y=1

1 H(1s) Au(ls)

1/

oe

Z{H:ve(ls)=lau — 7=1.00003

1 p————

0 20 40 60 80 100 120

Speed (v)

Details for Au atom:

V, (1s) = 173—970 =0.58¢c

vV, € —
" n | Au:v,(Is)=79au = y=1.22
c ~ 137 au
\/1 (VQJZ J1-(0.58
C

4> 1s electron of Au atom = relativistic particle  M_(I1s-Au) = 1.22m,



Relativistic effects

1) The mass-velocity correction

Relativistic increase in the mass of an electron with its velocity (when v, — c)



Relativistic effects

2) The Darwin term

It has no classical relativistic analogue
Due to small and irregular motions of an electron about its mean position (Zitterbewegung®)

*Analysis of Erwin Schrodinger of the wave packet solutions of the Dirac equation for relativistic
electrons in free space:The interference between positive and negative energy states produces what
appears to be a fluctuation (at the speed of light) of the position of an electron around the median.



Relativistic effects

3) The spin-orbit coupling

It is the interaction of the spin magnetic moment (s) of an electron with the magnetic field
induced by its own orbital motion (I)



Relativistic effects

4) Indirect relativistic effect

The change of the electrostatic potential induced by relativity is an indirect effect of the
core electrons on the valence electrons



One electron radial Schradinger equation

HARTREE ATOMIC UNITS

H.Y =[—%V2 +V}\P =¥

Atomic units:
h=m,6,=e=1
1/(4rey) = 1
c=1/a~ 137 au




One electron radial Schradinger equation

HARTREE ATOMIC UNITS

H.¥ =[—%V2 +V}\P =¥

V - Z In a sp
Ty symmeftrie

Atomic units:
h=m,6,=e=1
1/(4rey) = 1
c=1/a~ 137 au




One electron radial Schradinger equation

HARTREE ATOMIC UNITS INTERNATIONAL UNITS

hZ
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e

HS\P:[—EVZJrV}P:e*P HS‘P=[—
2

V? +V}P=5*P

vo Z In a spherically Ze*
Ty symmeftric potential

Are,r

Foim =Ry (r)YI,m (‘9’ (0)
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Vi=—_—|r? 0
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Dirac Hamiltonian: a brief description

Dirac relativistic Hamiltonian provides a quantum mechanical description
of electrons, consistent with the theory of special relativity.

[ E2 = p2c2 + m2c* ]

H W =e¥ wirhn Hy=ca-p+pmc’+V




Dirac Hamiltonian: a brief description

Dirac relativistic Hamiltonian provides a quantum mechanical description
of electrons, consistent with the theory of special relativity.

Momentum
E2 = p2c? + m?c* operator Rest mass

| N
H o ¥ =&V with H p =Ca-pP+ ,BmeC +V—> Flectrostatic
potential

(2x2) unit and
zero matrices

(2x2) Pauli spin matrices



Dirac equation: Hy and ¥ are 4-dimensional

¥ is a four-component single-particle wave function that describes spin-1/2

particles.
N e R -
spin up < /1 /1 ) Large
W, | i components (@) ® :
. factor
. . Small [z} = Umee) |
spin down(

. components (7)

® and y are time-independent two-component spinors describing the spatial
and spin-1/2 degrees of freedom

» Leads to a set of coupled equations for ® and y:
)z =(e-V —m,c?)g
co-P)p=(e—-V+mc?)y

c(o-

©l
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Solution in the slow
particle limit (p=0)

Non-relativistic limit
decouples ¥, from ¥,
and ¥; from ¥,

N

€ € £

£+m.c?

Antiparticles: up & down
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“““

*
g
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lPZ

. A Ao 2 =0
Solution in the slow - P, _(pz —'Py) &+mcC 0 Y,
particle limit (p=0) —(ﬁz 4 if)y) B, 0 e+mc? |\,

...............................................................
o "

—— ¢ 0 0 0
Non-relativistic limit | : t b vl t 0 ‘1' 0
: 2 0 2 ¢ : : 2 2
decouples ¥; from ¥, | i mc’, 0 L R I I L
and ¥; from ¥, : . ol 0 p
For a spherical potential V(r):
j=1+5/2

() r)l and f_ _are Radial functions
N [ J [‘Igné; Kj 3M anI pin functi A,
are angular-spin tuncuons
X i f )Y, ko e




Dirac equation in a spherical potential

For a spherical potential V(r):

The resulting equations for the radial functions (g, and f, ) are simplified
if we define:
&V (r)

Energy: &'=¢&— mec2 Radlially varying mass: M (r) =m, + >
C




Dirac equation in a spherical potential

For a spherical potential V(r):

The resulting equations for the radial functions (g, and f,) are simplified
if we define: |
- 2 - . , &'V (r)
Energy: &€ =&—M_C Radlially varying mass: M, (r) =m, + ?
C

Then the coupled eguations can be written in the form of the radial eq. :

n’ 1 .d( ,dg,, n? 10+1) n’  dvdg,, K dV (l+x) ,
- 2 r +V+ 2 nK 2 2 - 2 2 gnK:ggnK
2M, r° dr dr 2M, r AM,c® dr dr 4M jc® dr r
Mass-velocity effect Darwin Spin-orbit
term coupling

72 1 d dR. 72 101 +1 One electron radial
— —2—(r2—"]+[v + ( 5 )}Rn,, =¢R,, - Schrédinger equation in a
2m, r= dr dr spherical potential

Note that: x(x+1)=1(1+1)




Dirac equation in a spherical potential

For a spherical potential V(r):

The resulting equations for the radial functions (g, and f,) are simplified
if we define:

. . . g-VI(r
Energy: &'=¢&— mec2 Radially varying mass: M e(r) =m, + 2C2( )
Then the coupled eguations can be written in the form of the radial eq.:
2 2 2 2
_h 12 d (rz dgnx}r VI I(Ierl) o - h2 dv dg,, hz dv (1+K‘)gm(:g,gm(
2M, r*dr( dr 2M, r 4M c® dr dr  4M ¢ dr r
and Darwin Spin-orbit
term coupling
df, 14, . (x-1)
- (V & )g nx + an
dr 7&c r

Due to spin-orbit coupling, ¥ is not an eigenfunction
of spin (s) and angular orbital moment ().

No approximation
Instead the good quantum numbers are j and x have been made

Note that: x(x+1)=1(1+1) so far B



Dirac equation in a spherical potential

Scalar relativistic approximation

Approximation that the spin-orbit term is small
= neglect SOC in radial functions (and treat it by perturbation theory)

No SOC = Approximate radial functions: 9,.— J, fre = T

2 = 2 2 ~
_ 12 d (rZ%)+ vl |(|42r1) s h2 dv dg, .
2M, r* dr dr 2M, 1 4M c® dr dr
F h dgnl . . ) e ~2 T2\ 24,
and Ty = M ¢ dr with the normalization condition: _f gy + fyjrodr=1




Dirac equation in a spherical potential

Scalar relativistic approximation

Approximation that the spin-orbit term is small
= neglect SOC in radial functions (and treat it by perturbation theory)

No SOC = Approximate radial functions: 9,.— J, fre = T

2 = 2 2 ~
_ 12 d (rZ%)+ vl |(|42r1) s h2 dv dg, .
2M, r* dr dr 2M, 1 4M c® dr dr
f _ h dgnl . . ) e ~2 T2\ 24,
and T, = M ¢ dr with the normalization condition: _f gy + fyjrodr=1

The four-component wave function is now written as:

@ variation” (on the large component only)

~y

e

~ ~ Inclusion of the spin-orbit coupling in "second
{I‘,:( j ( gnl(r)Yj

~i fu(N) ¥, Hy = e+ Ho 7

&D /S a pure spin state with N
~ _ ' H o - R 1dv(al 0
X 15 amixture of up and down spin states 0 =AM 22 rdrlo o




Relativistic effects in a solid

"> For a molecule or a solid:

Relativistic effects originate deep inside the core.

It is then sufficient to solve the relativistic equations in a spherical
atomic geometry (inside the atomic spheres of WIENZK).

C—> Justify an implementation of the relativistic effects only inside the
muffin-tin atomic spheres




Atomic sphere (RMT) Region

P

Core Valence
electrons electrons
« Fully » Scalar relativistic
relativistic (no SOC)

4 \

Spin-compensated Possibility to add SOC
Dirac equation (279 variational)

SOcC: Spin orbit coupling



Atomic sphere (RMT) Region Interstitial Region

P v

Core Valence Valence
electrons electrons electrons
« Fully » Scalar relativistic Not relativistic
relativistic (no SOC)

4 \

Spin-compensated Possibility to add SOC

Dirac equation (279 variational)
SOC: Spin orbit coupling



Implementation in WIENZ2k: core electrons

Core states: fully occupied case.inc for Au atom
. — spin-compensated Dirac 17000 0
equation (include SOC) 1-12  (noccup)
2,-1,2  (n,k,0occup)
Atomic sphere (RMT) Region I 2,12 (n,k,0ccup)
2,-2,4 (n,k,occup)
Tr'eﬁ 3,-1,2  (n,k,0ccup)
electrons For spin-polarized potential, 2 ;i (n,,0ccup)
V spin up and spin down are calculated 2 24 égzgggﬂg;
« Fully » separately, the density is averaged 336 (nxoccup)
r e’“’i‘”s"’c according tfo the occupation number 4:-1:2 (n:K:OCCU p)
_ specified in case.inc file. 4,1,2 (n,,occup)
Spin-compensated 4,-2,4 (n,,occup)

Dirac eguation

4,2,4 (n,k,0ccup)
4,-3,6 (n,x,0occup)
5-1,2 (n,k,0ccup)

j=l+s/2 | k=-s(j+1/2) | occupation

| |s=-1 s=+1| s=-1 s=+1|s=-1 s=+1 4,3,6 (n,x0ccup)
4,-4,8 (.n,x,occup)
S 1/2 -1 2 0

1/2  3/2 1 -2 4
3/2  5/2 2 =3 4 6
52 712 3 -4 8

-~ O T
w N - O




Implementation in WIENZ2k: core electrons

Core states: fully occupied case.inc for Au atom
. — spin-compensated Dirac 17000 0
equation (include SOC) 1812 5| 1-1,2  (n,x,0ccup)
2512 2,-1,2  ( n,x,0ccup)
Atomic sphere (RMT) Region I 2pt?—12,1,2 (n,x,0ccup)
2p®? —| 2,-2,4 (n,x,0ccup)
Tr'eﬁ 3s¥2 | 3-1,2 (n,x,0ccup)
electrons For spin-polarized potential, gp;z 2 ;i (n,,0ccup)
¥ spin up and spin down are calculated 353,2 N 3"2 4 H: 282538
« Fully » separately, the density is averaged 3d52 | 3-3.6  (n.x,0ccup)
r "”“’i‘”s”c according to the occupation number 4512 4:-1:2 ( n,k,0ccup)
_ specified in case.inc file. 4p2 4,12 (n,x,0ccup)
Spin-compensated 4p3P2 4,-2,4  (n,k,0ccup)

Dirac eguation

4d3/2 4,2,4 (n,x,0ccup)

- . : 4d5/? 4,-3,6 (n,x,occup)

j=1+s/2 | x=-s(j+1/2) [ occupation 5512 [5-12  (nx.occup)

| S=-1 s=+1| s=-1 s=+1|s=-1 s=+1 4§52 4, 3,6 ( n,K,occup)

4f72 — | 4,-4,8  ('n,x,0ccup)

s O 1/2 -1 2 0

p 1|12 32 1 -2 4
d 2| 32 52 2 -3 4 6
f 3|52 72 3 -4 8




Implementation in WIENZk: valence electrons

Valence electrons INSIDE atomic spheres are treated

within scalar relativistic approximation [1] if RELA ( .
is specified in case.struct file (by default). - ’
Title Atomic sphere (RMT) Region|
F LATTICE,NONEQUIV.ATOMS: 1 225 Fm-3m omic sphere (RMT) Region
MODE OF CALC=RELA unit=bohr
7.670000 7.670000 7.670000 90.000000 90.000000 90.000000 Valence
ATOM  1: X=0.00000000 Y=0.00000000 Z=0.00000000 electrons
MULT= 1 ISPLIT= 2
Aul NPT= 781 RO=0.00000500 RMT= 2.6000 Z: 79.0 ﬂ!'
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000 victh
0.0000000 1.0000000 0.0000000 Sca/?;offs/gZ;’ISflc
0.0000000 0.0000000 1.0000000
48 NUMBER OF SYMMETRY OPERATIONS

¢ no k dependency of the wave function, (n,l,s) are still good guantum numbers

¢ all relativistic effects are included except SOC

¢ small component enters normalization and calculation of charge inside spheres
¢ augmentation with large component only

¢ SOC can be included in « second variation »

Valence electrons in interstitial region
[1] Koelling and Harmon, J. Phys. € (1977) are freated classically




Implementation in WIENZk: valence electrons

SOC is added in a second variation (lapwso): -
- First diagonalization (lapwl): H.YWY, =&, .
- Second diagonalization (lapwso): (H1 +Hg, )\I’ =&¥
The second equation is expanded in the basis of ~ Atomic sphere (RMT) Region I

first eigenvectors (‘¥,)
Valence
electrons

N - - - -
Z(&ijgf +( P HSO‘\P{>X\P1' W) =¥ | ¥) v
[ Scalar relativistic
sum include both up/down spin states (no i"‘?
— N is much smaller than the basis size in lapwl —
Possibility to add SOC

(29 variational)




Implementation in WIENZk: valence electrons

SOC is added in a second variation (lapwso):

- First diagonalization (lapwl): H,Y, = ¢ .
- Second diagonalization (lapwso): (H1 +Hg, )‘I’ =¥
The second equation is expanded in the basis of  Atomic sphere (RMT) Region :
first eigenvectors (‘¥,)
Valence
N : : i i : electrons
> l6yed + (W [Hoo| W) | W) = &) | W) v
[ Scalar relativistic
sum include both up/down spin states (no i"")
— N is much smaller than the basis size in lapwl
Possibility to add SOC
(29 variational)

¢ SOC is active only inside atomic spheres, only spherical potential (V1) is taken into
account, in the polarized case spin up and down parts are averaged.

¢ Eigenstates are not pure spin states, SOC mixes up and down spin states

¢ Off-diagonal term of the spin-density matrix is ignored. It means that in each SCF cycle
the magnetization is projected on the chosen direction (from case.inso)

Viyr Muffin-tin potential (spherically symmetric)



Controlling spin-orbit coupling in WIENZ2k

¢ Do a regular scalar-relativistic "scf" calculation

¢ save_lapw

¢ initso_lapw

e case.inso:
WFFIL
4 1 O I Imax, 1pr,kpot
-10.0000 1.50000 emin,emax (output energy window)
0. 0. 1. direction of magnetization (lattice vectors)
NX number of atoms for which RLO is added
NX1 -4.97 0.0005 atom number,e-lo,de (case.inl), repeat NX times
0O0O0O0O number of atoms for which SO 1s switch off; atoms

e case.inl(c):

@)

2 0.30 0.005 CONT 1

0] 0.30 0.000 CONT 1

K-VECTORS FROM UNIT:4 -9.0 4.5 65 emin/emax/nband

e symmetso (for spin-polarized calculations only)

¢ run(sp)_lapw -so «=——  -so switch specifies that scf cycles will include SOC




show dayfile
show STDOUT
analysis
save_lapw
restore_lapw
initso_lapw
view structure
stop SCF

stop mini

full diag.

inm_vresp
in0_grr

edit .machines
testpara
testparal

testpara2

Configuration

Controlling spin-orbit coupling in WIENZ2k

The w2web interface is helping you

Session: | Au-fec ]
fu/xrocquef/DATA/PREPA-PENNSTATE/Au-fcc

Initialization of spin-orbit calculations

Au-fcc.in2c has been created

Select magnetization direction, RLOs, SO on/off
set larger EMAX in energy window

System not spinpolarized

Non-spin polarized case

\A@b



show dayfile
show STDOUT
analysis
save_lapw
restore_lapw
initso_lapw
view structure
stop SCF

stop mini

full diag.
core-superposition
inm_vresp
in0_grr

edit .machines
testpara
testparat

testpara2
Session Mgmt.
Configuration

Controlling spin-orbit coupling in WIENZ2k

Session: [ Co-hcp

/u/xrocquef/ DATA/PREPA-PENNSTATE/Co-hep

Initialization of spin-orbit calculations

Co-hep.in2c has been created
edit Co-hcp.inso | Select magnetization direction, RLOs, SO on/off

edit Co-hcp.inl | set larger EMAX in energy window

This is a spin-polarized system. SO may reduce symmetry.
x symmetso | Determines symmetry in spinpolarized case

| edit Co-hcp.outsymso | view Co-hcp.outsymso

-
<

The w2web interface is helping you

Spin polarized case

A new setup for SO calculations has been created (_so). If you commit the next step will create new Co-hcp.struct, in1, in2c, inc, cimsum/up/dn files. PLEASE "save_lapw" any previous calculation.

| Prepare new input files |

The number of symmetry operations may have changed, then you must run KGEN.
x kgen | Generate k-mesh with proper SO-symmetry

edit Co-hep.klist | view Co-hcp.klist

2web



Relativistic effects in the solid: Illustration

volume (au?)

95 100 105 & 10 115

LDA overbinding (7%)
No difference NREL/SREL

Bulk modulus:

- NREL: 131.4 GPa
- SREL: 1315 GPa
- Exp.: 130 GPa




Relativistic effects in the solid: Illustration

volume (au3)

' LDA overbinding (7%)
No difference NREL/SREL

Bulk modulus:

- NREL: 131.4 GPa
- SREL: 131.5 GPa
- Exp.: 130 GPa

volume (au3)
115 180 185 190 195 200 205 210

LDA overbinding (2%)
Clear difference NREL/SREL

Bulk modulus:

- NREL: 344 GPa
- SREL: 447 GPa
- Exp.: 462 GPa

hcp-0Os
Z =76




volume (aud)

Relativistic effects in the solid: Illustration

volume (au3)

75 180 185 :190 195 200 205

\

\
\ SREL

e

: /
SREL+SO U —

10 ¢ Scalar-relativistic (SREL):

- LDA overbinding (2%)
- Bulk modulus: 447 GPa
+ spin-orbit coupling (SREL+SO):

- LDA overbinding (1%)
- Bulk modulus: 436 GPa

— Exp. Bulk modulus: 462 GPa
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AU 1s
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(1) Relativistic orbital contraction

Radius of the 1s orbit (Bohr model):

r(ls) =

.

o€

n‘a,

AND 8, =
m.Ca

=1hohr

S

——

r(ls) = 1 =0.013 bohr

e

Atomic units:
A=m,6=e=1
c=1/a =~ 137 au




(1) Relativistic orbital contraction

r2p (e/bohr) Radius of the 1s orbit (Bohr model):
50
~N 0 T Non relativistic (1=0)
- — Relativistic (k=-1)
40
o€
30
Au 1s
2

i n<a h

= r(ls)=—=2 AND a,=——=1bohr
, . mca

Pl =m20% OrbitalN\éa. = 1 —
o p o lcontraction  e—ee. r(ls) = — = 0.013 bohr

0.00 0.01 0.02 0.03 0.04 0.05 0.06 79

r (bohr)

In Au atom, the relativistic mass (M) of the
1s electron is 22% larger than

the rest mass (m)
r(ls) = = =0.010bohr « 70 =y-m =1.
=7 T10122 &= M=y-m =Lem,

)
M.ca 7

e

n“a, 1 1

a,|[RELA|=




(1) Relativistic orbital contraction

r?p (e/bohr)
0.5
----- Non relativistic (1=0)
— Relativisti =-1 Z 79
04~ i V,(65) == =—=13.17 = 0.096¢
n 6
0.3 1 1
\\ ) — = = 10046
5 R Orbital y 2 2
. \contraction \/1_(\/63) \/1_(0-096)
0.1 ’r', \\‘\ C
4 :'I \ ’:' Au 6S \‘\\
0.0 ﬂ‘N/\ Vil | . | ' =
0 2 4 6
r (bohr)

Direct relativistic effect (mass enhancement) —» contraction of 0.46% only
However, the relativistic contraction of the 6s orbital is large (>20%)

ns orbitals (with n > 1) contract due to orthogonality to 1s



Non relativistic (1=0)
— Relativistic (k=-1)

r2p (e/bohr)

(1) Orbital Contraction: Effect on the energy

r?p (e/bohr)
50 0.5
1~ T Non relativistic (1=0)
N | N — Relativistic (k=-1) |
Relativistic 40 0.4
correction (%) 1/
30 | I” ‘\\
(ERELA . ENRELA) ) Orbital
204 |/ \contraction

ENRELA '
h \\
1 \\
2 \ 6
r (bohr)

20 - 10 -
| i Au_1s
0 - / . . —ee
10 4 ‘/F( 001 002 003 004 005 006 0
) r (bohr)
1s 2s 3s 4s 5s 6s
0-
-10 -—I_I I
-20 =
-30 =

40 -



r?p (e/bohr)

(2) Spin-Orbit splitting of p states

0.7
0.6
0.5—_
0.4
0.3—_
02-

0.1

Non relativistic (I=1)

~~~
-~ -

0.0



r?p (e/bohr)
0.7

(2) Spin-Orbit splitting of p states

¢

0.6 —
QS-:
0.4 —
Q3-:
02-

0.1

— Relativistic (k=-2)

----- Non relativistic (I=1)

AU 5p

0.0
0.0

0.5

1.0

1.5 2.0 25
r (bohr)

I=1

orbital

Spin-orbit splitting of |-quantum number

A E ,:b\,z’
,\x\\?:/— — j=3/2 (x=-2)

D4
/’/
-
-
-
-

j=1+1/2=3/2

¢ p3/> (k=-2): nearly same behavior than non-relativistic p-state



(2) Spin-Orbit splitting of p states

¢ Spin-orbit splitting of |-quantum number

r?p (e/bohr) 4 E
[0y A Non relativistic (I=1)
0'6__ — Relativistic (k=1)
0.5 =1
S i=1/2 =1

0.4 J 1~1/2 J / (K )

| <1/
0.3 s
52 j=1-1/2=1/2

- I\

I \\

ST AN orbital
oou Y\ . === moment

0.0 0.5 1.0 1.5 2.0 25

r (bohr)
¢ py/» (k=1): markedly different behavior than non-relativistic p-state spin

g.-1 is non-zero at nucleus



(2) Spin-Orbit splitting of p states

¢ Spin-orbit splitting of |-quantum number

r?p (e/bohr) A
07T """ Non relativistic (I=1) E ,,5\7'
— Relativistic (k=-2) \\’V e _
0'6__ — Relativistic (k=1) -\’z\’x J 3/2 (x=-2)
97 I=1 :’:
— j=1/2 (x=1
0.4+ J 1~1/2 27 J ( )
] ~1/
0.3 2
] j=1+1/2=3/2 j=1-1/2=1/2
= orbital spin orbital
0.0 4 . . , , moment moment
0.0 0.5 1.0 15 2.0 25

Ej=3/2 * Ej=1/2

¢ p1/2 (k=1): markedly different behavior than non-relativistic p-state
g.-1 is non-zero at nucleus



(2) Spin-Orbit splitting of p states

r2p (e/bohr)
07——————————7777" Non relativistic (I1=1)
’ — Relativistic (k=-2)
. 0.6 - _
Relativistic ] Relativistic (k=1)
correction (%) 05
(ERELA — ENRELA) e
ENRELA 0.3—_
0.2
20 4
0.1-
0.0 T T T
10- 2pli2 pp3 0.0 0. 10 15 2.0 2.5
1 5 3pl2 3p3~2 Ap2 4psP2 5pl2 5p3/2 r (bohr)
K: K:—
0 — R — —
-10 -
-20 =
_30 -

Scalar-relativistic p-orbital is similar to p3/2 wave function, but ¥
-40 - does not contain p!/2 radial basis function



(3) Orbital expansion: Au(d) states

Higher |-quantum number states expand due to better shielding of nucleus charge from
contracted s-states

Non-relativistic (NREL)




(3) Orbital expansion: Au(d) states

Higher |-quantum number states expand due to better shielding of nucleus charge from
contracted s-states

Non-relativistic (NREL)

Zeffl =Z- G(NREL)l

-e




(3) Orbital expansion: Au(d) states

Higher |-quantum number states expand due to better shielding of nucleus charge from
contracted s-states

Non-relativistic (NREL) Relativistic (REL)

Zeffl =Z- G(NREL)l zeffl > Zeff2 ZeffZ =Z- G(REL)

>




(3) Orbital expansion: Au(d) states

Higher |-quantum number states expand due to better shielding of nucleus charge from
contracted s-states

Non-relativistic (NREL) Relativistic (REL)

Zeffl =Z- G(NREL)l zeffl > ZeffZ lzeffz =Z- G(REL)

(@O = >

Indirect relativistic effect




(3) Orbital expansion: Au(d) states

Relativistic
correction (%)

5d3/2 5d5/2
1 (ERELA — ENRELA)

4f5/2 4f7/2

20 - EreLa k=3 k=-4
10 - 3d3/2 3d5/2 4d3/2 4d5/2
| k=2 k=-3
— ™
0 — — B
r2p (e/bohr) r2p (e/bohr)
-10 - 41— |- Non relativistic (I1=2) 040 |- Non relativistic (1=2)
— Relativistic (k=2) ] — Relativistic (k=2)
— Relativistic (k=-3) — Relativistic (k=-3)
-20 - 3 0.3
-30 - 2 0.2
Orbital
-40 - . il expansion
0 ' T ' T ' T ' 0.0 ' T ' T ' T '
0.0 0.1 0.2 0.3 0.4 0 1 2 3 4

r (bohr) r (bohr)



Relativistic effects on the Au energy levels

Relativistic
correction (%)

(ERELA B ENRELA)

ENRELA
4 5d3/2 5d5/2
20 = 452 Af712
3d3/2 3d5/2 4d3/2 4d5/2
10 T 2pl/2 2p3/2 3pl/2 3p3/2 4pl/2 4p3/2 5pl/2 5p3/2
1s 2s 3s 4s 5s

0- |
-10 -_I_I I
-20 -
-30 -



Atomic spectra of gold

Non-relativistic Relativistic
Ry Ry
Orbital contracti
p— — tion
AdiE0 S 6s  -0.45
Sdsso = -0.47 = f
| SO splitting
d — -0.60 — . 5d3 ;0 = -.068 —
Sp —-398 —— Sp3i2 = -4.07 —
_~
\ SO splitting
51:'1._:"2 — '528 —
58 — -B.

5s — -7.94 —



the differences (DOS & optical prop.)
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Relativistic semicore states: pl/2 orbitals

Electronic structure of fcc Th, SOC with 6p!/? local orbital

Energy vs. basis size DOS with and without p!/2
o numbe: Oc:;‘ basis funcﬂbnfsso 6 p 1/ 2 ‘ CCASO
| | 6.2 eV —i

@—® scalar 6p (R,,=2.82 bohr)

®—W6p,, loc. orb. (R, =2.82 bohr)
G—= scalar 6p (R, ,=3.00 bohr)
E—E6p,, loc. orb. (R,,=3.00 bohr)

pY2 not included k “ ’/\!\J J
/ 6pl/2 | 1 |

el \e\e\e | 75ev |
| e 6p3/2

b2 included —~ ; -
B J“NNJM

0 10

6p3/2

DOS (stateseV)

-4+

GGA+SO+6p,,

E-E, (eV)

DOS (states/eV)

50 100
E_.(eV)

J.Kunes, P.Novak, R.Schmid, P.Blaha, K.Schwarz, Phys.Rev.B. 64, 153102 (2001)

E (eV)



SOC in magnetic systems

» SOC couples magnetic moment to the lattice

sdirection of the exchange field matters (input in case.inso)

» Symmeftry operations acts in real and spin space

¢ number of symmetry operations may be reduced (reflections act differently on
spins than on positions)

¢ time inversion is not symmetry operation (do not add an inversion for klist)

¢initso_lapw (must be executed) detects new symmetry setting A

Direction of magnetization

[100] [010] [001]  [110]
1 A A A A
m, A B B
m, B A B
2, B B A B




Relativity in WIENZ2k: Summary

WIENZk offers several levels of treating relativity:

enon-relativistic: select NREL in case.struct (not recommended)
¢standard: fully-relativistic core, scalar-relativistic valence
mass-velocity and Darwin s-shift, no spin-orbit interaction
¢ “fully”-relativistic:
adding SO in "second variation" (using previous eigenstates as basis)

adding p!/? LOs to increase accuracy (cautionl!l)

X lapwl (increase E-max for more eigenvalues, to have
x lapwso basis for lapwso)

X lapw?2 -so -c SO ALWAYS needs complex lapw2 version

¢Non-magnetic systems:

SO does NOT reduce symmetry. initso_lapw just generates case.inso and case.in2c.

¢ Magnetic systems:

symmetso dedects proper symmetry and rewrites case.struct/in*/clm*



CuO interlude

ATOMIC STRUCTURE OF CuO

CuO, square planar




CuO interlude

ATOMIC STRUCTURE OF CuO

N
N
N
N

CuO, ribbons




CuO interlude

ATOMIC STRUCTURE OF CuO

N

Oxygen 4-fold coordinated /\




CuO interlude

ATOMIC STRUCTURE OF CuO

Monoclinic 3D atomic structure




CuO interlude

MAGNETIC STRUCTURE OF CuO




CuO interlude

MAGNETIC STRUCTURE OF CuO




CuO interlude

LOW-TEMPERATURE MAGNETIC STRUCTURE OF CuO FROM
SINGLE-CRYSTAL NEUTRON DIFFRACTIONI

Magnetic moments are along the
j_) C [0 1 0] direction

a

AFM

+ Interactions
along [1 0 -1]

[1] J.B. Forsyth et al., J. Phys. C: Solid State Phys. 21 (1988) 2917



CuO interlude

Estimation of the Magneto-crystalline Anisotropy Energy (MAE) of CuO

Allows to define the magnetization
easy and hard axes

Here we have considered the
following expression:

MAE = E[uvw]-E[010]

E[uvw] is the energy deduced from
spin-orbit calculations with the
magnetization along the [uvw]

crystallographic direction

[1] X. Rocquefelte, P. Blaha, K. Schwarz, S. Kumar, J. van den Brink, Nature Comm., Accepted
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Pauli Hamiltonian for magnetic systems

C—> 2x2 matrix in spin space, due to Pauli spin operators

H, =—2h—r:]eV2 +V,, +ny- B, +§(&-r)+...

.................................................................................................................................................................................................................

(2x2) Pauli spin matrices



Pauli Hamiltonian for magnetic systems

C—> 2x2 matrix in spin space, due to Pauli spin operators

hz 2 L. = - 3
H,=——V +Veﬁ+yBa-Beﬁ+§(a-l)+...

(2x2) Pauli spin matrices

C—> Wave function is a 2-component vector (spinor) - It corresponds to
the large components of the dirac wave function (small components

are neglected)
H., Y, _ . Y, spin up
Y, S8/ spin down



Pauli Hamiltonian for magnetic systems

C—> 2x2 matrix in spin space, due to Pauli spin aperafors

hZ
HP:_—V +Veff+:uB eﬁ+§a I)

/S

Effective electrostatic Effective magnetic
po tential field

Ve ext +V +’ Beff = Bext +’
/

Exchange - car'r'e/af/an Exchange-correlation
potential field




Pauli Hamiltonian for magnetic systems

C—> 2x2 matrix in spin space, due to Pauli spin aperafar's

hZ
HP:_—V +Veff+:uB eﬁ‘+§a I)

/N

Effective electrostatic Effective magnetic Spin-orbit
pafenﬁa/ field coupling
Ve ext +V +’ Beff — Bext +’ é’ B> 1dv
/ S 2MZ?r dr
Exchange - corre/ar/on Exchange-correlation
potential field

Many-body effects which are defined
within OF T LDA or GGA



Exchange and correlation

—> From DFT exchange correlation energy:
E,.(p(r).m)= p(r)

Local function of the electronic density (p) and the magnetic moment (m)

dr’

> Definition of V,. and B, (functional derivatives):

v - OE,. (p, m) 5 OE,. (p, rﬁ)
N op & o

C—> LDA expression for V,. and B,,:

~ aghom (p’ m) aghom( m)
=R (p, M)+ p Py p—rt mn

B.. is parallel to the magnetization density vector (m)




Non-collinear magnetism N~ 1 7> | ¢

C—> Direction of magnetization vary in space, thus spin-orbit term is present

7’ .
sz—mv +V + 1z0 eﬂ+§(a-l)+
e
z \
( th V24V, + 4B, +.. 15(B, —iB, )
i > v =cy
u5(B, +iB, ) L VLRV Y
\ Zme )

W, ¢ Solutions are non-pure spinors
Y = ¥, and ¥, are
¥

non-zero ¢ Non-collinear magnetic moments



Collinear magnetism | ! v froa

C—> Magnetization in z-direction / spin-orbit is not present

H., :_h—zv +V ¢ + 150 - B +§j§<)+

2m

e

2 )
( th VZ+V. + 1B, +.. 0
e hz w
0 —— V4V, — 1B, +...
\ 2me )

ey

W, 0 ¢ Solutions are pure spinors
Vi = v, = . .

¢ Collinear magnetic moments

¢ Non-degenerate energies



Non-magnetic calculation

—> No magnetization present, B, = B, = B, = 0 and no spin-orbit coupling

7 = .
H, :_sz +Vy + 1508 +§}<)+...

e

[ p2 A
— 2— Vz +Veff 0
m
’ hZ l// — gl//
0 —-——V?+V,,
\ 2me )
W 0
Wy = 0 WV, = v ¢ Solutions are pure spinors

¢ Degenerate spin solutions



Magnetism and WIENZ2k

—> WienZk can only handle collinear or non-magnetic cases

non-magnetic case magnetic case
DOS DOS
m=n-n =0 m=n-n=0
run_lapw script: run_lapw script:  Eg - --
x lapwO x lapwO
x lapw1 x lapwl -up
x lapw2 x lapwl -dn
x lcore x lapw2 -up
X mixer x lapw2 -dn
x lcore -up

x lcore -adn
T l X mixer T l



Magnetism and WIEN2k

C—> Spin-polarized calculations

¢ runsp_lapw script (unconstrained magnetic calc.)
¢ runfsm_lapw -m value (constrained moment calc.)

¢ runafm_lapw (constrained anti-ferromagnetic calculation)

¢ spin-orbit coupling can be included in second variational step

¢ never mix polarized and non-polarized calculations in one case
directory !l



Non-collinear magnetism RS 7> | /

» In case of non-collinear spin arrangements WIENncm (WIENZ2k
clone) has to be used:
¢ code based on Wien2k (available for Wien2k users)

¢ structure and usage philosophy similar fo Wien2k
¢ independent source tree, independent installation

WIENncm properties:

¢ real and spin symmetry (simplifies SCF, less k-points)
¢ constrained or unconstrained calculations (optimizes magnetic moments)
¢ SOC in first variational step, LDA+U

¢ Spin spirals



Non-collinear magnetism N~ 1 7> | ¢

—> For non-collinear magnetic systems, both spin channels have to be
considered simultaneously

runncm_lapw script:

xncm lapwO
xncm lapw1
xnem lapw2
xncm Icore
xncm mixer

Relation between spin density
matrix and magnetization

mz=n¢¢—n¢¢¢0
m, = 3(nyy + nyp) = 0

m, = iz(ny - nyp) = 0

DOS

I



WienNCM: Spin spirals ASER

C—> Transverse spin wave

TR

@=R-g "N | W

—

m" = m(cos(d- R”), sin(q- R”)sin 6, COS 9)
¢ spin-spiral is defined by a vector q given in reciprocal space and an angle 6
between magnetic moment and rotation axis.
¢ Rotation axis is arbitrary (no SOC) - fixed as z-axis in WIENNCM

= Translational symmetry is lost |

— But WIENnNcm is using the generalized Bloch theorem. The calculation of spin
waves only requires one unit cell for even incommensurate modulation q vector.



WienNCM: Usage ~ b adt |

1. Generate the atomic and magnetic structures
¢ Create atomic structure

¢ Create magnetic structure

See utility programs: ncmsymmetry, polarangles, ...

2. Run initncm (initialization script)

3. Run the NCM calculation:
¢ xncm (WIENncm version of x script)

¢ runncm (WIENncm version of run script)

More information on the manual (Robert Laskowski)

rolask@theochem.tuwien.ac.at



