

$$E = T_o[\rho] + \int V_{ext} \rho(\vec{r}) d\vec{r} + \frac{1}{2} \int \frac{\rho(\vec{r})\rho(\vec{r}')}{|\vec{r}' - \vec{r}|} d\vec{r} d\vec{r}' + E_{xc}[\rho]$$
vary ρ
1-electron equations (Kohn Sham)
$$\frac{\{-\frac{1}{2}\nabla^2 + V_{ext}(\vec{r}) + V_C(\rho(\vec{r})) + V_{xc}(\rho(\vec{r}))\}\Phi_i(\vec{r}) = \varepsilon_i \Phi_i(\vec{r})$$

$$\frac{-Z/r}{\int \frac{\rho(\vec{r})}{|\vec{r}' - \vec{r}|} d\vec{r}} \quad \frac{\partial E_{xc}(\rho)}{\partial \rho} \qquad \rho(\vec{r}) = \sum_{\varepsilon_i \leq E_F} |\Phi_i|^2$$

$$= E + E + E + exchange-correlation energy$$

 $\mathcal{L}_{xc} = \mathcal{L}_{x} + \mathcal{L}_{c} : exchange-correlation energy$ $\mathcal{V}_{xc} = \frac{\partial \mathcal{L}_{xc}(\rho)}{\partial \rho} : exchange-correlation potential$

Both, E_{xc} and V_{xc} are unknown and must be **approximated**

$$E_{\rm xc} = \int \epsilon_{\rm xc} \left(\mathbf{r} \right) d^3 r$$

- 1. Local density approximation (LDA): $\mathcal{E}_{xc} = f(\rho)$
- 2. Generalized gradient approximation (GGA): $\varepsilon_{xc} = f(\rho, \nabla \rho)$
- **3.** Meta-GGA: $\mathcal{E}_{xc} = f(\rho, \nabla \rho, \nabla^2 \rho, \tau), \quad \tau = (1/2) \sum_{i=1}^{N_{\sigma}} \nabla \psi_{i,\sigma}^* \cdot \nabla \psi_{i,\sigma}$
- 4. use of occupied orbitals (e.g., Hartree-Fock)
 - hybrid-DFT (PBE0, HSE, YS-PBE0)
- 5. use of unoccupied orbitals (e.g., RPA)

¹J. P. Perdew *et al.*, J. Chem. Phys. **123**, 062201 (2005)

• A huge number of GGA functionals have been proposed:

$$\epsilon_{\rm xc}^{\rm GGA}(\rho,\nabla\rho) = \epsilon_{\rm xc}^{\rm LDA}(\rho)F_{\rm xc}(r_s,s)$$

$$r_s \propto rac{1}{
ho^{1/3}}$$
 $s \propto$

$$m{s} \propto rac{|
abla
angle}{
ho^{4/2}}$$

• where F_{xc} is the **enhancement factor**

- specialized GGAs (WC, PBESOL) give much better lattice parameters than PBE these GGAs are "soft"
- "hard" GGAs (RPBE) are much better for atomization energies of molecules
- PBE is a good compromise for both quantities
- HTBS might be better (except alkali atoms)
 - Haas, Tran, Blaha, Schwarz, Phys. Rev. B83, 205117 (2011)

Performance of GGAs in solids and molecules

Sn	NaF	NaF	Rb	
NaF	Rb	LiF	К	
• Pb	NaCl	Sn	NaF	
LiF	LiF	NaCl	NaCl	
NaCl	K	MgO	Na	
InAs	Pb	Pt	LiF	
Au	Sn	lr 👘	Li	
Ge	Ag	K	MgO	
Ag	LiCl	InAs	LiCI	
TABLE	III:	Atomiza	tion en	ergv

(in kcal/mol) for the molecules of the AE6 test set. See Table I for the definition of me, mae, mre, and mare.

HTBS

Molecule	RPBE	PBE	WC	AM05	PBEsol	HTBS	Expt.
SiH_4	308.3	313.0	316.9	329.7	323.4	312.1	322.4
SiO	186.1	195.6	202.1	205.1	204.6	190.5	192.1
S_2	107.7	114.7	121.1	122.8	123.2	114.4	101.7
C_3H_4	694.8	720.0	735.4	751.1	748.3	701.5	704.8
$C_2H_2O_2$	633.0	663.3	682.9	697.0	695.5	643.9	633.4
C_4H_8	1128.1	1168.5	1195.8	1224.1	1218.9	1144.7	1149.0
me	-7.5	12.0	25.1	37.7	35.1	0.6	
mae	9.6	15.1	27.0	37.7	35.1	7.1	
mre	-0.8	3.4	6.5	8.8	8.3	1.6	
mare	2.8	4.4	7.0	8.8	8.3	3.2	

Trends of GGAs:

Structural properties

- on average GGAs are better than LDA, but
 - LDA still best for 5d-series (Pt, Au). PBE too large !
 - PBE best for 3d series (Fe, Ni, ..). LDA too small !
 - WC, PBEsol, HTBS best compromise for all elements
 - van der Waals: LDA overbinds, GGAs underbind (sometimes non-bonding !)
- Cohesive properties:
 - (hard) GGAs much better than LDA
- Electronic structure:
 - LDA and GGAs very similar
 - band gaps underestimated by 50 % (\rightarrow TB-mBJ)
- Strongly correlated electrons (3d, 4f)
 - often LDA and GGA give qualitatively wrong results: metal instead of insulator, too small magnetic moments or even non-magnetic instead of AFM cuprates, no (too small) structural distortions, orbital order,

Perdew, Kurth, Zupan, Blaha (1999):

$$E_{xc}^{m-GGA} \propto \int \rho(r) F[\rho(r), \nabla \rho(r), \nabla^2 \rho(r), \tau(r)] dr$$

• use laplacian of ρ , or kinetic energy density $\tau(r) = \frac{1}{2} \sum_{i} |\nabla \psi_i(r)|^2$

• analytic form for V_{xc} not possible ($V_{xc} = dE_{xc}/d\rho$), SCF very difficult

best meta-GGAs today describe structural parameters like WC or PBEsol, but have better atomization energies:

• revTPSS by Perdew et al. (2009)

Becke-Johnson potential (J. Chem. Phys. 124, 221101 (2006))
 local potential designed to reproduce non-local OEP potentials in atoms modified Becke-Johnson potential

$$v_{x,\sigma}^{\text{MBJ}}(\mathbf{r}) = c v_{x,\sigma}^{\text{BR}}(\mathbf{r}) + (3c-2) \frac{1}{\pi} \sqrt{\frac{5}{12}} \sqrt{\frac{2t_{\sigma}(\mathbf{r})}{\rho_{\sigma}(\mathbf{r})}},$$

$$c = \alpha + \beta \left(\frac{1}{V_{\text{cell}}} \int_{\text{cell}} \frac{|\nabla \rho(\mathbf{r}')|}{\rho(\mathbf{r}')} d^3 r'\right)^{1/2}$$

- c depends on the density properties of a material
- + gaps of "GW" quality
- + good for correlated TM-oxides
- NO energy (only V)

F. Tran P. Blaha

PRL 102, 226401 (2009)

- 1. Prepare the input files for an usual PBE (or LDA) calculation
- 2. run scf cycle (+ structure optimization,)
- 3. save_lapw case_pbe
- 3. init_mbj_lapw (phase 1, creates case.inm_vresp, sets R2V in case.in0)
- 4. run(sp)_lapw -i 1 (Run one PBE cycle to create case.vresp and case.r2v)
- 5. rm *.broyd*
- 6. init_mbj_lapw (phase 2)
 - sets indxc=28 (MBJ) in case.in0 and generates case.in0_grr with indxc=50;
 - select mBJ-parameters, see Koller et al. PRB 85, 155109 (2012)
- 7. run(sp)_lapw -i 80 (mBJ calculations need more cycles than PBE)

semilocal functionals available in WIEN2k

Functional	Authors	Year	indxc (case.in0)
LDA	Dirac, Slater, etc.	1930	5
GGA:			
PBE	Perdew et al	1996	13
WC	Wu, Cohen	2005	11
PBEsol	Perdew et al.	2007	19
HTBS	Haas et al.	2011	46
TB-mBJ*	Tran, Blaha	2009	28, 50
meta-GGA:			
revTPSS**	Perdew et al.	2009	29

* only a potential (E_{xc} = LDA) ** only E_{xc} (V_{xc} = PBE)

- Self-Interaction correction (Perdew, Zunger 1981; Svane+ Temmermann)
 - vanishes for Bloch-states, select "localized states" by hand
- LDA+U DMFT (dynamical mean field theory)
 - approximate HF for selected "highly-correlated" electrons (3d,4f,5f)
 - empirical parameter U
- Optimized Exact exchange (OEP, similar to HF, but with a local DFT based potential, expensive, numerically problematic, correlation ??)
- Hartree-Fock
 - neglects correlation, which for most solids is essential
- Hybrid functionals (mixing of DFT+ HF)
- GW method: calculate the quasiparticle self energy $\boldsymbol{\varSigma}$

•
$$\Sigma(r,r',\omega) = \frac{i}{2\pi} \int d\omega' G(r,r,\omega-\omega') W(r,r',\omega)$$

 $\varepsilon_{nk}^{QP} = \varepsilon_{nk}^{LDA} - \langle nk | \Sigma(\varepsilon_{nk}^{QP}) - V_{xc}^{LDA} | nk \rangle$

available for WIEN2k M. Scheffler et al. (very expensive)

Hartree-Fock

$$\begin{split} E_{HF} &= \int \phi_i^* (\mathbf{r}) \left(-\frac{1}{2} \sum_{i}^N \nabla_i^2 + V_{ext} \right) \phi_i (\mathbf{r}) d\mathbf{r} \\ &+ \frac{1}{2} \sum_{i,j}^N \int \frac{\phi_i^* (\mathbf{r}_1) \phi_i (\mathbf{r}_1) \phi_j^* (\mathbf{r}_2) \phi_j (\mathbf{r}_2)}{\left| \mathbf{r}_i - \mathbf{r}_j \right|} d\mathbf{r}_1 d\mathbf{r}_2 \\ &- \frac{1}{2} \sum_{i,j}^N \int \frac{\phi_i^* (\mathbf{r}_1) \phi_j (\mathbf{r}_1) \phi_i (\mathbf{r}_2) \phi_j^* (\mathbf{r}_2)}{\left| \mathbf{r}_i - \mathbf{r}_j \right|} d\mathbf{r}_1 d\mathbf{r}_2 \end{split}$$

kinetic E + external V

classic Coulomb energy of electrons

exchange energy

- This leads to a "non-local" (orbital dependent) potential.
- It treats <u>"exchange</u>" (e⁻-e⁻ interaction between e⁻ of same spin, Pauli-principle, Slater det.) **exactly**, but neglects <u>"correlation</u>" completely.
- Correlation can be treated by perturbation methods (MP2), "coupled cluster" (CCSD), or CI methods, using "many" Slater determinants.

Hybrid functionals

General strategy: Mixing exact-exchange (i.e. Hartree-Fock) and local-density energies, as suggested by the adiabatic connection formula

$$E^{xc}[n] = \int_0^1 U_{\lambda}^{xc}[n] d\lambda \sim \frac{1}{2} U_0^{xc}[n] + \frac{1}{2} U_1^{xc}[n]$$
(41)

 $U_0^{xc}[n]$... nonlocal exchange energy of Kohn-Sham orbitals $U_1^{xc}[n]$... potential energy for exchange and correlation

Example: B3LYP functional

$$E^{xc}[n] = (1-a)E^{x}_{LSDA} + aE^{x}_{exact} + bE^{x}_{B88} + cE^{c}_{LYP} + (1-c)E^{c}_{VWN}$$
(42)

where E_{B88}^{x} stand for the exchange part of the Becke88 GGA functional, E_{LYP}^{c} for the correlation part of the Lee-Yound-Parr local and GGA functional, and E_{VWN}^{c} for the local Vosko-Wilk-Nusair correlation functional. *a*, *b*, and *c* are adjustable parameters.

 $\mathsf{PBE0:} \quad \mathsf{E}_{\mathsf{xc}}^{\mathsf{PBE0}}\left[\rho\right] = \mathsf{E}_{\mathsf{xc}}^{\mathsf{PBE}}\left[\rho\right] + \alpha \left(\mathsf{E}_{\mathsf{x}}^{\mathsf{HF}}\left[\Phi\right] - \mathsf{E}_{\mathsf{x}}^{\mathsf{PBE}}\left[\rho\right]\right) \ \alpha = 0.25$

$$E_{\rm xc} = E_{\rm xc}^{\rm SL} + \alpha_{\rm x} \left(E_{\rm x}^{\rm SR-HF} - E_{\rm x}^{\rm SR-SL} \right)$$

1/r is decomposed into a short-range and long-range component using

screened functionals improve k-mesh convergence dramatically

- **•** gaps: strong correlation between α and ω
- formation energies: $\omega < 0.7$ has little influence

band gaps of YS-PBE0 with α =0.25

strong improvement over PBE, but

gaps of "insulators" still strongly underestimated

 \bullet optimal α found by fit to exp. as function of $1/\epsilon_0$ (dielectric constant)

speed-up by "diagonal-only" approximation

- Hybrid DFT calculations are done in 2 parts
- the eigenfunctions of the semilocal potential are used as basis functions for the operator α (v^{SR-HF}_{xσ} - v^{SR-SL}_{xσ})
- > the non-diagonal matrix elements of this operator are much smaller than the diagonal ones, in the diagonal approximation they are put to 0
- this saves the trouble of evaluating the non-diagonal matrix elements
- Furthermore the eigenfunctions don't change so that selfconsistence is reached after one iteration

eigenfunctions of the semilocal potential $\varphi_1(\mathbf{r}), \dots, \varphi_N(\mathbf{r})$ $\hat{O} = \alpha \left(\hat{v}_{x\sigma}^{\text{SR-HF}} - v_{x\sigma}^{\text{SR-SL}} \right)$

$$\begin{pmatrix} \left\langle \varphi_{1} \left| \hat{O} \right| \varphi_{1} \right\rangle & \left\langle \varphi_{1} \left| \hat{O} \right| \varphi_{2} \right\rangle & \dots & \left\langle \varphi_{1} \left| \hat{O} \right| \varphi_{N} \right\rangle \\ \left\langle \varphi_{2} \left| \hat{O} \right| \varphi_{1} \right\rangle & \left\langle \varphi_{2} \left| \hat{O} \right| \varphi_{2} \right\rangle & \dots & \left\langle \varphi_{2} \left| \hat{O} \right| \varphi_{N} \right\rangle \\ \vdots & \vdots & \ddots & \vdots \\ \left\langle \varphi_{N} \left| \hat{O} \right| \varphi_{1} \right\rangle & \left\langle \varphi_{N} \left| \hat{O} \right| \varphi_{2} \right\rangle & \dots & \left\langle \varphi_{N} \left| \hat{O} \right| \varphi_{N} \right\rangle \end{pmatrix}$$

band gap comparison

• standard full hybrids (fixed α) work well for semiconductors

- $\alpha(1/\epsilon_0)$ improves the results significantly
- "diagonal-only" approximation works in most cases (speed-up)

- expensive (10-100 times more than LDA)
- k-point and mpi-version (useful already for medium sized cases)
- for bigger cases use a "reduced" k-mesh for the potential (must be compatible with full mesh (like 4x4x4 and 2x2x2)
- consider non-scf calculations (for DOS, bands) or even the "diagonal" approximation PBEO₀ (Tran, Physics Letters A 376 (2012) 879)
- for setup follow the UG 4.5.8; run_lapw -hf
- works well for semiconductors and TM-oxides
 - mixing parameter α (like the U in LDA+U)
 - $\hfill \ \hfill \ \alpha$ should be bigger for large gap insulators
 - α should be VERY small for (magn.) metals
 - hybrids localize TM-d and O-p states
- structural parameters depend mainly on the underlying GGA, but are always a bit smaller than plain GGA.

Fig. 1. (Color online.) Density of states of GaAs calculated with the PBE, PBE0, and ${\rm PBE0}_0$ methods. The Fermi energy is set at zero.

- select certain electrons within an atomic sphere
 - mainly 3d or 4f states, since only those valence electrons are sufficiently localized (and require stronger exchange potentials)
 - same spirit and speed as LDA+U (with parameter α instead of U)

 $\mathsf{E}_{\mathsf{xc}}^{\mathsf{PBE0}}\left[\rho\right] = \mathsf{E}_{\mathsf{xc}}^{\mathsf{PBE}}\left[\rho\right] + \alpha \left(\mathsf{E}_{\mathsf{x}}^{\mathsf{HF}}\left[\Phi_{\mathsf{sel}}\right] - \mathsf{E}_{\mathsf{x}}^{\mathsf{PBE}}\left[\rho_{\mathsf{sel}}\right]\right)$

cp \$WIENROOT/SRC_templates/template.ineece case.ineece

-9.0 2	emin natom
1 1 2	iatom nlorb lorb
2 1 2	iatom nlorb lorb
HYBR	HYBR / EECE mode
0.25	amount of exact exchange

runsp -eece

(Tran et al. PRB 74, 155108 (2006))

Failure of the independent particle approximation

- expect large excitonic effects when (localized) electrons are excited into the conduction bands (optics, XAS, EELS)
- the remaining hole and the excited electron may interact strongly with each other

Excitons in LiF

BSE calculations are very expensive

(code available on request, needs hundrets of cores + memory)
 R. Laskowski, P. Blaha, Phys. Rev. B, 81, 075418 (2010)

