Core level spectroscopy: XPS, XAS, EELS, XES (XSPEC, TELNES)

Peter Blaha

TU Vienna

- Ionization potential of core- e^- , IP= $E^{tot}(N) E^{tot}(N-1)$
 - gives information on charge state of the atom
- core-eigenvalues ϵ_i are NOT a good approximation: $\epsilon_i = dE/dn$
- Slater's "transition state":
 - core-eigenvalues ε_i for half occupancy

secant ~ tangent at N-1/2

occup.

N-1

Ν

- Δ -SCF-calculation with and without core-hole: $E^{tot}(N) E^{tot}(N-1)$
 - supercells to reduce hole-hole interaction

C,N 1s	exp.(eV)	ε _i	Δ -SCF
TiC	281.5	264.7	281.9
Ti ₄ C ₄	281.5	263.3	281.1
TiN	397.0	377.5	397.1

 ΔE

- core electrons are excited into a conduction band
- Each core shell introduces an absorption edge, (they are indexed by the principal number of a core level)

K-1s, L₁-2s, L₂-2p_{1/2}, L₃-p_{3/2}

• XES:

knock out a core electron, valence electron fills core hole and *hv* is emitted

X-ray absorption spectroscopy - XAS Electron energy loss spectroscopy - EELS

EELS spectrum of various TM oxides

X-ray Absorption

Near-Edge Structure Extended X-ray

Absorption Fine Structure

XAS: synchrotron EELS: microscope

- transition described by Fermis "golden rule" between initial (core) and final (conduction-band) state and the e⁻ or photon
- double differential cross section:

$$\vec{q}\vec{R} << 1 \rightarrow e^{i\vec{q}\vec{R}} = 1 + i\vec{q}\vec{R} + \frac{(\vec{q}\vec{R})^2}{2!} + \dots$$
EELS XAS
$$\frac{\partial^2 \sigma}{\partial E \partial \Omega} \propto \sum_{I,F} \left| \left\langle I \left| \vec{q}\vec{R} \right| F \right\rangle \right|^2 \qquad \frac{\partial^2 \sigma}{\partial E \partial \Omega} \propto \sum_{I,F} \left| \left\langle I \left| \vec{\varepsilon}\vec{R} \right| F \right\rangle \right|^2$$

The polarization vector in XAS plays the same role as momentum transfer in (nonrelativistic) ELNES within the dipole approximation.

(TELNES3 can also handle non-dipole transitions + relativistic corrections)

core-valence spectroscopies give information on the local DOS (because of $\langle \Psi_{core} | r | \Psi_{val} \rangle$) of angular momentum character $\ell \pm 1$

"Final state" determines the spectrum:

Emission spectroscopy:

Final state has filled core, but valence hole. This is usually well screened, thus one "sees" the groundstate.

Absorption spectroscopy:

Final state has a "hole" in core state, but additional e⁻ in conduction band. Core-hole has large effect on the spectrum

electron – hole interaction, "excitonic effects"

- No core hole (= ground state, sudden approximation)
 - usually not a good approximation (maybe in metals ?)
- Z+1 approximation (eg., replace C by N)
 - also not very good
- Core-hole (supercell) calculations:
 - Remove 1 core electron on ONE atom in the supercell, add 1 electron to conduction band
 - *Remove 1 core electron, add 1 electron as uniform background charge*
 - considers statically screened e⁻ h coulomb correlation
 - Fractional core hole (consider different screening)
- Explicit treatment of electron-hole interaction (excitonic effects) using Bethe-Salpeter equation (BSE)

define your structure (structgen)

initialize calculation (init_lapw)

run scf-cycle (run_lapw)

geometry optimization of your structure (min_lapw)

generate supercell (x supercell)

initialize supercell structure, define core hole/add valence e-

run scf-cycle

remove extra valence e-

run XSPEC / TELNES3 task

XSPEC-task

[refresh] [no refresh]

16:42:50 idle

Execution >>] [StructGen[™]] [view structure] [initialize calc.] [run SCF] [single prog.] [optimize(V,c/a)] [mini. positions]

[Utils. >>]

[<< Tasks] [El. Dens.] [DCS] [XSPEC] [TELNES.2] [OPTIC] [Bandstructure]

[Files >>]

[struct file(s)] [input files] [output files] [SCF files]

[Session Mgmt.>>] [change session] [change dir] [change info]

[Configuration]

Usersguide [html-Version] [pdf-Version]

Session	magnetite
/area51/	blaha/lapw/correlated/magnetite

XSPEC

Seccion: [magnetite]

[Spin UP][Spin DOWN]

Spin UP selected.

in you want to moldue states with higher energy		
edit magnetite.in1	Edit in1	

x lapw1 -up Calculate eigenvalues 🔽 interactively

x lapw1 -dn Calculate eigenvalues 🔽 interactively

x lapw2 -qtl -up Calculate partial charges 🔽 interactively

edit magnetite.inxs Edit input-file for XSPEC	Title: Atom 1 L3 absorption spectrum		
	1	(atom)	
x xspec -up Calculate X-ray spectra 🔽 interactively	2	(n core)	
	1	(1 core)	
plot Plot XSPEC	0,0.5,0.5	(split, Int1, Int2)	
	-2,0.02,15	(EMIN, DE, EMAX)	
	ABS	(type of spectrum)	
	1.00	(S)	
	2.0	(gamma0)	
	1.50	(W only for EMIS)	
	AUTO	(AUTO or MANually select Energy	
	-6.93		
	-10.16		
	-13.9		
	1		

TELNES3 task

save

InnesGen™ for TELNES3

Session: [rutile]

Execution >>] [StructGen[™]] [view structure] [initialize calc.] [run SCF] [single prog.] [optimize(V,c/a)] [mini. positions]

[Utils. >>]

[<< Tasks]</pre> [El. Dens.] [DOS] [XSPEC] [TELNES3] [OPTIC] [Bandstructure]

[Files >>]

[struct file(s)] [input files] [output files] [SCF files]

[Session Mgmt. >>] [change session] [change dir] [change info]

/psi11/pblaha/lapw/bulk/Rutil_exp	
TELNES3	Title: Rutile 0- K edge Atom: 2: 0 ↓ Edge: use n and l ↓ (n=1, 1=0)
edit Rutil_exp.innes Edit inpu	Edge onset: 285 eV Beam energy: 300 keV Energy grid: 0.0 eV to 15.0 eV in steps of 0.05 eV
Only if you want to Include edit Rutil_exp.in1 Edit in1	Collection s.a.: 5.0 mrad Convergence s.a.: 1.87 mrad Spectrometer broadening 0.5 eV Q-mesh: NR=5 NT=2
x lapw1 Calculate eigenva	Advanced settings: Branching ratio: (statistical if empty) Spinorbit splitting of core state (eV): (calculated if empty)
x qtl-telnes Calculate parti	Orientation sensitive: α= °, β= °, γ= ° Integrate over equivalent atoms: to (all eq. atoms if empty)
x telnes3 Calculate ELNES	Detector position: θ_x 0.0 mrad, θ_y 0.0 mrad Modus: energy ♀
view Rutil_exp.outputelnes dis	Initialization: ✓ Calculate DOS ✓ write DOS ✓ Calculate rotation matrices ✓ write rotation matrices
edit Rutil_exp.inb Edit input-f	Verbosity: basic \$ File headers: Write headers (default) \$ Interaction potential: relativistic (recommended) \$
x broadening Broaden the s	Q-grid: U uniform \$ θ_0= (not used for uniform grid) Interaction order: all λ (default); \$ Final state selection rule: L=I +/- 1 (default) \$
plot Plot ELNES	Set Fermi energy manually: EF= Ry
save_eels Save an elnes ca	Read final state wavefunctions: filename= case.finalwf Calculate DOS only
	■ NBTOT: 200

B-K XANES in h-BN/Ni(111)

B-K edge in BN and BN/Ni(111)

contradict recent DFT calculations by Grad etal."

Preobrajenski etal, PRB70, 165404 (2004): "The experiments"

(a) B K-edge А BN (B-1s hole) BN/Ni (B-1s hole) Intensity (arb.units) Photoabsorption (arb.units) bulk h-BN вС D 2 ML $A^{\prime\prime}$ A' 1 ML 20 190 195 200 205 210 1 5 0 1 0 5 Photon energy (eV) Energy (eV)

J.Luitz et al., Eur. Phys. J. B 21, 363{367 (2001)

ab-initio configuration interaction (solid is approximated by finite cluster)

Y. Kumagai, H. Ikeno, and I. Tanaka, J. Phys.: Condens. Matter 21, 104209 (2009).
H. Ikeno, F. M. F. de Groot, S. E., and I. Tanaka, J.Phys.: Condens. Matter 21, 104208 (2009).
H. Ikeno and I. Tanaka, Phys. Rev. B 77, 075127 (2008).

• linear response in time dependent DFT (TDDFT)

J. Schwitalla and H. Ebert, Phys. Rev. Lett. 80, 4586 (1998). A. L. Ankudinov, A. I. Nesvizhskii, and J. J. Rehr, Phys.Rev. B 67, 115120 (2003).

• Bethe- Salpeter equation (BSE)

E. L. Shirley, J. Electron Spectrosc. Relat. Phenom. 144-147, 1187 (2005).

E. L. Shirley, Phys. Rev. Lett. 80, 794 (1998).

J. A. Soininen and E. L. Shirley, Phys. Rev. B 64, 165112 (2001).

W. Olovsson, I. Tanaka, T. Mizoguchi, P. Puschnig, and C. Ambrosch-Draxl, Phys. Rev. B 79, 041102 (2009).

R. Laskowski, P. Blaha, Phys. Rev. B, 81, 075418 (2010)

- Bethe-Salpeter-equation: L(12;1'2')
- solving a 2-particle (e⁻ h) equation of large dimension (N_v N_c N_k ~ 100000)

$$\sum_{v'c'k'} \left(H^{eh}_{v'c'k',vck} \right) A^{\lambda}_{v'c'k'} = E^{\lambda} A^{\lambda}_{vck}$$

$$H^{eh} = H^{diag} + H^{dir} + 2H^{x}$$

$$H^{diag} = (E_{\nu,k} - E_{c,k})\delta_{cc}\delta_{\nu\nu}\delta_{kk}$$

eigenvalue difference between hole (v) and electron(c) state

 $H_{vckv'c'k'}^{dir} = -\int d^{3}r \ d^{3}r' \Psi_{vk}(r) \Psi_{ck}^{*}(r') W(r,r') \Psi_{v'k'}^{*}(r) \Psi_{c'k'}(r')_{10}$ attractive screened static Coulomb interaction $W_{r} W \sim \varepsilon^{-1}$

$$H_{vckv'c'k'}^{x} = \int d^{3}r \ d^{3}r' \Psi_{vk}(r) \Psi_{ck}^{*}(r) \overline{v}(r,r') \Psi_{v'k'}^{*}(r') \Psi_{c'k'}(r') \omega^{*}$$

e-h exchange with bare Coulomb potential ν

Excitons in LiF

L_{2,3} edge for Ca in CaF₂

Decomposition of ε_2 into the excitation from $p_{1/2}$ and $p_{3/2}$ states cross terms suppress the L₃ branch and enhance L₂

$$\varepsilon_{2}^{xx}(\omega) = \frac{8\pi^{2}}{\Omega} \sum_{\lambda} \left| \sum_{hek} A_{hek}^{\lambda} \frac{\langle h\mathbf{k} | -i\nabla_{x} | e\mathbf{k} \rangle}{\varepsilon_{e\mathbf{k}} - \varepsilon_{h\mathbf{k}}} \right|^{2} \times \delta(E^{\lambda} - \omega)$$

Decomposition into excitations from $p_{1/2}$ and $p_{3/2}$

cross term suppresses the L_3 branch and enhances the L_2

Decomposition into excitation into the e_q and t_{2q} bands

the first peak of L_2 or L_3 is related to excitations into t_{2g} , the second peak is associated with e_g the cross term strongly modifies the ratio between these peaks

3d metal L_{2,3} branching ratio

"Practical aspects of running the WIEN2k code for electron spectroscopy", C.Hebert, Micron 38 (2007) 12–28

Acknowledgement:

TELNES: P.Schattschneider, M.Nelhiebel, C.Hebert (TU Vienna) K.Jorissen (Univ. Washington)

BSE: R.Laskowski (TU Vienna) C.Ambrosch-Draxl

WIEN2k: K.Schwarz, J. Luitz

Thank you for your attention !