Cluster Exponsion & ATAT@WIENDE Claudia Ambrosch-Draxl

Chair of Atomistic Modelling and Design of Materials, University of Leoben

Eiffeltower

- @ Built 1887-89
- @ 10 000 t steel
- @ 300 m high

(pre)determined by the atomic/electronic scale

Length Scales

Ab initio phase diagrams

Weights and the second strength of the second symmetry
 Large unit cells
 Temperature as variable

Stability of alloy phases
 Intermetallic phases
 Order / disorder
 Mixed phases
 Phase separation

Ab initio thermodynamics

Free energy from statistical physics

 $H \longrightarrow E_r(V, N) \longrightarrow Z(T, V, N) \longrightarrow F(T, V, N)$

Partition function

$$Z(T, V, N) = \sum_{r} \exp\left[-\beta E_{r}(V, N)\right]$$

Free energy

 $F(T, V, N) = -k_B T \ln [Z(T, V, N)]$

Coarse graining

 $H|\Psi\rangle = E_r|\Psi\rangle$

Hamiltonian contains all degrees of freedom
 Electronic 10⁻¹⁵ sec
 Magnetic 10⁻¹³ sec
 Vibrational 10⁻¹² sec
 Configurational >10⁻¹⁰ sec

@ Make use of different time scales of excitations
Treat them separately.

Treat them separately !

Thermodynamics

Challanges

@ Partition function

$$Z(T, V, N) = \sum_{r} exp\left[-\beta E_{r}(V, N)\right]$$

Need energy of huge number of states (~10³⁰)

@ How to sample so many configurations?
Monte Carlo simulations
@ How to compute their total energy?
Cluster expansion

Thermodynamics

Concept

- Express total energy as a function of configurations
 - Atomic and lattice relaxation treated implicitly
- ② Expand energy in terms of interactions inside clusters:

Example: YBa₂Cu₃O_{6+x}

 $T_{c}[K]$

Cluster Expansion

H. F. Poulsen et al., Nature 349, 594 (1991). R. J. Cava et al., Physica C165, 419 (1990).

Example: YBa₂Cu₃O_{6.5}

Example: YBa₂Cu₃O_{6.5}

	$V_{\alpha}[eV]$	
V _{1/2 1/2}	0.098	
V ₁₀	-0.114	
V ₀₁	0.119	
V ₁₁	-0.001	
V _{3/2 1/2}	-0.017	
V ₂₀	-0.006	
V ₀₂	-0.021	

 $E = \sum_{\alpha} V_{\alpha} \xi_{\alpha}$

Effective cluster interaction ECI

Cluster Expansion

We can stand on other peoples' shoulders ...

10 Years Later ...

Alloy Theoretic Automated Toolkit

- Axel van der Walle
- http://www.its.caltech.edu/~avdw/atat/
- Tool for cluster expansion & phase diagrams

A. van de Walle, M. Asta, and G. Ceder , Calphad 26, 539 (2002).A. van de Walle, Calphad 33, 266 (2009).

ATAT@WIEN2k

WIEN2k

- @ http://www.wien2k.at/
- Ø DFT package
- All-electron full-potential code
- Accurate total energies for arbitrary structures

A happy marriage ...

- Interface between the two programs
- Translates ATAT output into WIEN2k input

M. Chakraborty, J. Spitaler, P. Puschnig, and CAD Comp. Phys. Commun. 181, 913 (2010).

Scripts and programs

Script/Programme	Purpose	
cluster_expand.csh	master script	
read.csh	creates inputs files from wien.wrap	
latt_gen.f90	creates inputs files for Vegard	
vegard2.csh	implements Vegard averaging	
str.out2xsf.sh [25]		
correct.f90 }	convert str.out to WIEN2k struct file	
init_ATAT.csh		
in1_create.f90	create the gage in 1 files for individual element	
in1_create.csh	Create the case. Int mes for individual element	
in1.f90		
in1.csh }	create the file case.in1 (or case.in1c)	
read_rmt.csh		
vol_opt.csh		
vol_opt.f90	shape optimization	
run_ATAT.csh		
poly_fit.f		

ATAT@WIEN2k

Input: wien.wrap

Variables	Status
RKmax = 9.0	required
Ncomponents $= 2$	required
Nspecies $= 2$	required
Element = Al	required
Z = 13 RMT = 2.2	required
Element = Ti	required
Z = 22 RMT = 2.2	required
Nk = 13824	required
$Error_flag = 0$	required
Nshape = 3	required
Njobs = 12	required
Vegard = 1	optional
<pre>In1_flag = 1</pre>	optional
VASP_flag = 0	optional
Pre-relax = 0	optional

ATAT@WIEN2k

Typlical results

@ Effective interaction parameters for TiAl

Typical results

@ Predicted ground states for TiAl Without shape relaxation

ATAT@WIEN2k

Typical results

@ Predicted ground states for TiAl With shape relaxation

Summary

- Interface between ATAT and WIEN2k
- Code available (P. Blaha)
- Interp://amadm.unileoben.ac.at/software.html
- @ Reference:

M. Chakraborty, J. Spitaler, P. Puschnig, and CAD ATAT @WIEN2k: An interface for cluster expansion based on the linearized augmented planewave method Comp. Phys. Commun. 181, 913 (2010).

Have fun with it!

