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Why this text ?

As you can see in the reference section (page ix), there are more then a few excellent books,
reviews and papers on all topics covered in the present text. Why would there be any need
for yet another text? It is my feeling that much of the existing material has been written
for an audience that was already rather familiar with theoretical and/or computational con-
densed matter physics. With the increasing availability of more and better general-purpose
condensed matter codes – such as WIEN2K – increasingly more people with an explicit experi-
mental background start to use these codes. Especially those new experimental users that have
no theoretician nearby, might find the existing reading material either too short and fast or
too voluminous and detailed to start with. This text tries to fill that gap: it is meant to give
a rather detailed overview of DFT and the family of (L)APW-methods, but starts from the
knowledge that every physicist, chemist and engineer has acquired at an undergraduate level.
A large appendix section even brushes up the most important of these undergraduate items,
with emphasis on those aspects that will play a role in the main text. From the basic material
of the appendices, the reader is taken at the hand, and is step by step introduced into DFT
and the (L)APW-methods. How the different elements explained in the text appear in the in-
and output of the WIEN2K-code, is demonstrated in the example section.

Chapter 1 on Density Functional Theory can be read independently from the chapters 2
to 5 on (L)APW-based band structure methods. Readers that are particularly interested in
one of both main subjects, can without much harm read only the relevant chapters.

This text is by no means a course to teach you how to use the WIEN2K-code from scratch.
Such a course can be found in the User’s Guide accompanying the code, and this text should be
used parallel to it. The emphasis of the User’s Guide is more on how to work with WIEN2K. This
text explains the formalism behind the code, and should make clear why this or that quantity
appears in the in- or output of WIEN2K, and what its influence on a calculation can be. This
text is meant to help a beginner to acquire a deeper understanding about what she or he is
doing with the code.

Much emphasis has been put on mathematical rigour. Therefore you will find many formulae
that contain tons of indices. At first sight, this might scare some people. Nevertheless, this
crowded notation is meant as a learning tool: try hard to understand the meaning and necessity
of every piece of notation. This will prevent you from deviating into misconceptions. As a
compensation for this loaded notation, steps between subsequent formulae are kept very small
and should be really easy to understand.

This text is by no means complete or error-free. If you find an error or inconsistency, please
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e-mail Stefaan.Cottenier@fys.kuleuven.ac.be. If you – as a beginner – feel that important
topics are not covered, you might suggest items to add. Or if you – as an expert – feel the
same, you might even write them . . .

Stefaan Cottenier
Instituut voor Kern- en Stralingsfysica (IKS)
Katholieke Universiteit Leuven
Celestijnenlaan 200 D
B-3001 Leuven
Belgium

Stefaan.Cottenier@fys.kuleuven.ac.be
http://www.fys.kuleuven.ac.be/iks/nvsf/nvsf.html



Citing this text

If you found this text useful, it might occur that you want to cite it in your own work. In that
case, please use exactly the following citation:

S. Cottenier, Density Functional Theory and the family of (L)APW-methods: a step-by-step in-
troduction (Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium), 2002, ISBN 90-807215-1-4
(to be found at http://www.wien2k.at/reg user/textbooks).
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For each of the main sections of this text, several good books, reviews or original papers exist
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Chapter 1

Density Functional Theory as a way to
solve the quantum many body problem

A solid is a collection of heavy, positively charged particles (nuclei) and lighter, negatively
charged particles (electrons). If we have N nuclei, we are dealing with a problem of N+ZN
electromagnetically interacting particles. This is a many-body problem, and because the par-
ticles are so light, quantum mechanics is needed: a quantum many body problem. The exact
many-particle hamiltonian for this system is:

Ĥ = − h̄2

2

∑

i

∇2
~Ri

Mi

− h̄2

2

∑

i

∇2
~ri

me

− 1

4πε0

∑

i, j

e2 Zi

| ~Ri − ~rj|
+

1

8πε0

∑

i6=j

e2

|~ri − ~rj| +
1

8πε0

∑

i6=j

e2 ZiZj

| ~Ri − ~Rj|
(1.1)

The mass of the nucleus at ~Ri is Mi, the electrons have mass me and are at ~ri. The first term
is the kinetic energy operator for the nuclei, the second for the electrons. The last three terms
describe the Coulomb interaction between electrons and nuclei, between electrons and other
electrons, and between nuclei and other nuclei. It is out of question to solve this problem exactly.
In order to find acceptable approximate eigenstates, we will need to make approximations at 3
different levels.

1.1 Level 1: The Born-Oppenheimer approximation

The nuclei are much heavier and therefore much slower than the electrons. We can hence
‘freeze’ them at fixed positions and assume the electrons to be in instantaneous equilibrium
with them. In other words: only the electrons are kept as players in our many body problem.
The nuclei are deprived from this status, and reduced to a given source of positive charge, they
become ‘external’ to the electron cloud. After having applied this approximation, we are left
with a collection of NZ interacting negative particles, moving in the (now external or given)
potential of the nuclei.

What are the consequences of the Born-Oppenheimer approximation on the hamiltonian 1.1?
The nuclei do not move any more, their kinetic energy is zero and the first term disappears.
The last term reduces to a constant. We are left with the kinetic energy of the electron gas, the

1
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potential energy due to electron-electron interactions and the potential energy of the electrons
in the (now external) potential of the nuclei. We write this formally as:

Ĥ = T̂ + V̂ + V̂ext (1.2)

It is interesting to note here that the kinetic and electron-electron terms of 1.2 depend only on
the fact that we are dealing with a many-electron system (and not with a many-proton system
for instance, where the strong nuclear force would play a role). They are independent of the
particular kind of many-electron system (Br2 or H2O molecule, Cu or Fe, bcc-Fe or fcc-Fe, . . .).
This part is universal. System-specific information (which nuclei, and on which positions) is
given entirely by V̂ext .

1.2 Level 2: Density Functional Theory

The quantum many body problem obtained after the first level approximation (Born-Oppenheimer)
is much simpler than the original one, but still far too difficult to solve. Several methods exist
to reduce equation 1.2 to an approximate but tractable form. A historically very important one
is the Hartree-Fock method (HF), described in many condensed matter textbooks. It performs
very well for atoms and molecules, and is therefore used a lot in quantum chemistry. For solids
it is less accurate, however. We will not treat HF, but explain a more modern and probably
also more powerful method: Density Functional Theory (DFT)1.

Although its history goes back to the early thirties of the 20th century, DFT has been
formally established in 1964 by two theorems due to Hohenberg and Kohn2.

1.2.1 The theorems of Hohenberg and Kohn

The traditional formulation of the two theorems of Hohenberg and Kohn is as follows:

First theorem: There is a one-to-one correspondence between the ground-state density ρ(~r) of
a many-electron system (atom, molecule, solid) and the external potential Vext . An immediate
consequence is that the ground-state expectation value of any observable Ô is a unique functional
of the exact ground-state electron density:

<Ψ| Ô|Ψ> = O[ρ] (1.3)

Second theorem: For Ô being the hamiltonian Ĥ, the ground-state total energy functional
H[ρ] ≡ EVext [ρ] is of the form

EVext [ρ] = <Ψ| T̂ + V̂ |Ψ>︸ ︷︷ ︸
FHK [ρ]

+ <Ψ| V̂ext |Ψ> (1.4)

= FHK [ρ] +
∫

ρ(~r) Vext(~r) d~r (1.5)

1As Hartree-Fock, DFT is a general method to solve the quantum many body problem. It can be applied
not only to the electron gas as we use here, but also to the proton-neutron gas in order to construct nuclear
models, or to the nucleus-electron gas without the Born-Oppenheimer approximation to describe solids with
light elements

2P. Hohenberg and W. Kohn, Physical Review 136(3B) (1964) p. 864
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where the Hohenberg-Kohn density functional FHK [ρ] is universal for any many-electron sys-
tem. EVext [ρ] reaches its minimal value (equal to the ground-state total energy) for the ground-
state density corresponding to Vext .

We do not prove these theorems here, but ponder a few implications of the three keywords
invertibility (one-to-one correspondence ρ ↔ Vext), universality and variational access (minimal
value).

First, the one-to-one correspondence between ground-state density and external potential
is intriguing. It is obvious that a given many-electron system has a unique external potential,
which by the hamiltonian 1.2 and the Schrödinger equation yields a unique ground-state many
particle wave function. From this wave function, the corresponding electron density is easily
found. An external potential hence leads in a well-defined way to a unique ground-state density
corresponding to it. But intuitively it looks like the density contains less information then the
wave function. If this would be true, it would not be possible to find a unique external potential
if only a ground-state density is given. The first theorem of Hohenberg and Kohn tells exactly
that this is possible! The density contains as much information as the wave function does
(i.e. everything you could possibly know about an atom, molecule or solid). All observable
quantities can be retrieved therefore in a unique way from the density only, i.e. they can be
written as functionals of the density.

Second, the universality of FHK [ρ]. Equation 1.5 is easily written down by using the density
operator3, and supposing the ground-state density is known, the contribution to the total
energy from the external potential can be exactly calculated. An explicit expression for the
Hohenberg-Kohn functional FHK is not known. But anyway, because FHK does not contain
information on the nuclei and their position, it is a universal functional for any many-electron
system. This means that in principle an expression for FHK [ρ] exists which can be used for
every atom, molecule or solid which can be imagined.

Third, the second theorem makes it possible to use the variational principle of Rayleigh-Ritz
in order to find the ground-state density. Out of the infinite number of possible densities, the
one which minimizes EVext [ρ] is the ground-state density corresponding to the external potential
Vext(~r). Of course, this can be done only if (an approximation to) FHK ]ρ] is known. But having
found ρ, all knowledge about the system is within reach...

It is useful to stress the meaning of the energy functional EVext [ρ] once more. When it is

3The density operator ρ̂(~r) for an N -particle system is defined as

ρ̂(~r) =
N∑

i = 1

δ(~ri − ~r) (1.6)

such that its evaluation for a many body wave function Ψ yields the density:

ρ(~r) = <Ψ(~r1, ~r2, . . . , ~rN )| ρ̂(~r)|Ψ(~r1, ~r2, . . . , ~rN )> (1.7)

= <Ψ(~r1, ~r2, . . . , ~rN )|
N∑

i = 1

δ(~ri − ~r)|Ψ(~r1, ~r2, . . . , ~rN )> (1.8)

=
N∑

i = 1

∫
Ψ∗(~r1, ~r2, . . . , ~ri ≡ ~r, . . . ~rN )Ψ(~r1, ~r2, . . . , ~ri ≡ ~r, . . . ~rN ) d~r1 d~r2 . . . d~ri\\ . . . d~rN (1.9)
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evaluated for the density ρ corresponding to the particular Vext for this solid, it gives the ground
state energy. When it is evaluated for any other density however, the resulting number has no
physical meaning4!

1.2.2 The Kohn-Sham equations

The equations of Kohn and Sham, published in 1965, turn DFT into a practical tool5. They are a
practical procedure to obtain the ground state density. Let us first rewrite the Hohenberg-Kohn
functional. The correlation energy is defined as this part of the total energy which is present in
the exact solution, but absent in the Hartree-Fock solution. The total energy functionals Ee[ρ]
and EHF [ρ] corresponding to the exact and Hartree-Fock Hamiltonians respectively, are6:

Ee = T + V (1.10)

EHF = T0 + (VH + Vx)︸ ︷︷ ︸
V

(1.11)

Here T and V are the exact kinetic and electron-electron potential energy functionals, T0 is the
functional for the kinetic energy of a non-interacting electron gas, VH stands for the Hartree
contribution and Vx for the exchange contribution. By subtracting 1.11 from 1.10, the functional
for the correlation contribution appears to be:

Vc = T − T0 (1.12)

The exchange contribution to the total energy is defined as the part which is present in the
Hartree-Fock solution, but absent in the Hartree solution. Obviously, with the Hartree func-
tional given by

EH = T0 + VH (1.13)

it can be defined as

Vx = V − VH (1.14)

With this knowledge, we can rewrite the Hohenberg-Kohn functional in the following way:

FHK = T + V + T0 − T0

= T0 + V + (T − T0)︸ ︷︷ ︸
Vc

= T0 + V + Vc + VH − VH

= T0 + VH + Vc + (V − VH)︸ ︷︷ ︸
Vx

= T0 + VH + (Vx + Vc)︸ ︷︷ ︸
Vxc

4This is too crude, but the details are subtle: any density ρi(~r), other than the ground-state density, which
extremalizes EVext [ρ] is an excited-state density, with Ei = EVext [ρ = ρi] the corresponding energy. The
inverse statement is not true: not all excited-state densities extremalize EVext [ρ]. If ρj(~r) is such a density,
Ej = EVext [ρ = ρj ] is a lower bound for the energy of the excited state.

5W. Kohn and L. J. Sham, Physical Review 140(4A) (1965) p. 1133
6For easier notation, we drop for a while the square brackets.
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Here Vxc is the exchange-correlation energy functional. We don’t know it formally, as it contains
the difficult exchange and correlation contributions only. If we assume for a while that we do
know Vxc, we can write explicitly the energy functional:

EVext [ρ] = T0[ρ] + VH [ρ] + Vxc[ρ] + Vext [ρ] (1.15)

One could use now the second Hohenberg-Kohn theorem to find the ground state density, but
then we would have won nothing by our transformation. Instead, you can interpret the above
expression also as the energy functional of a non-interacting classical electron gas, subject to
two external potentials: one due to the nuclei, and one due to exchange and correlation effects.
The corresponding Hamiltonian – called the Kohn-Sham Hamiltonian – is

ĤKS = T̂0 + V̂H + V̂xc + V̂ext (1.16)

= − h̄2

2me

~∇2
i +

e2

4πε0

∫ ρ(~r ′)
|~r − ~r ′| d~r

′ + Vxc + Vext (1.17)

where the exchange-correlation potential is given by the functional derivative

V̂xc =
δVxc[ρ]

δρ
(1.18)

The theorem of Kohn and Sham can now be formulated as follows:

The exact ground-state density ρ(~r) of an N-electron system is

ρ(~r) =
N∑

i =1

φi(~r )∗ φi(~r ) (1.19)

where the single-particle wave functions φi(~r) are the N lowest-energy solutions of the Kohn-
Sham equation

ĤKS φi = εi φi (1.20)

And now we did won a lot. To find the ground-state density, we don’t need to use the second
Hohenberg-Kohn theorem any more, but we can rely on solving familiar Schrödinger-like non-
interacting single-particle equations. The alternative of using the regular Schrödinger equation,
would have led to a far more difficult system of coupled differential equations, because of the
electron-electron interaction.

Be aware that the single-particle wave functions φi are not the wave functions of electrons!
They describe mathematical quasi-particles, without a direct physical meaning. Only the over-
all density of these quasi-particles is guaranteed to be equal to the true electron density. Also
the single-particle energies εi are not single-electron energies.

Both the Hartree operator VH and the exchange-correlation operator Vxc depend on the
density ρ(~r), which in turn depends on the φi which are being searched. This means we are
dealing with a self-consistency problem: the solutions (φi) determine the original equation (VH

and Vxc in HKS), and the equation cannot be written down and solved before its solution is
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Figure 1.1: Flow chart for the nth iteration in the selfconsistent procedure to
solve Hartree-Fock or Kohn-Sham equations.
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known. An iterative procedure is needed to escape from this paradox (see fig. 1.1). Some
starting density ρ0 is guessed, and a hamiltonian HKS1 is constructed with it. The eigenvalue
problem is solved, and results in a set of φ1 from which a density ρ1 can be derived. Most
probably ρ0 will differ from ρ1. Now ρ1 is used to construct HKS2, which will yield a ρ2, etc.
The procedure can be set up in such a way that this series will converge to a density ρf which
generates a HKSf which yields as solution again ρf : this final density is then consistent with
the hamiltonian.

1.2.3 The exchange-correlation functional

The Kohn-Sham scheme described above was exact: apart from the preceding Born-Oppenheimer
approximation, no other approximations were made. But we neglected so far the fact that we do
not know the exchange-correlation functional. It is here that approximations enter our theory.

A widely used approximation – called the Local Density Approximation (LDA) – is to
postulate that the exchange-correlation functional has the following form:

ELDA
xc =

∫
ρ(~r) εxc(ρ(~r)) d~r (1.21)

The function (not: functional) εxc(ρ) for the homogeneous electron gas has been defined in
Appendix E, and is numerically known. This postulate is somehow reasonable: it means that
the exchange-correlation energy due to a particular density ρ(~r) could be found by dividing the
material in infinitesimally small volumes with a constant density. Each such volume contributes
to the total exchange correlation energy by an amount equal to the exchange correlation energy
of an identical volume filled with a homogeneous electron gas, that has the same overall density
as the original material has in this volume (see Fig. 1.2). No law of nature guarantees that the
true Exc is of this form, it is only a reasonable guess. By construction, LDA is expected to
perform well for systems with a slowly varying density. But rather surprisingly, it appears to
be very accurate in many other (realistic) cases too.

A next logical step to improve on LDA, is to make the exchange-correlation contribution of
every infinitesimal volume not only dependent on the local density in that volume, but also on
the density in the neighbouring volumes. In other words, the gradient of the density will play a
role. This approximation is therefore called the Generalized7 Gradient Approximation (GGA).
Although GGA performs in general slightly better than LDA, there are a few drawbacks. There
is only one LDA exchange-correlation functional, because there is a unique definition for εxc.
But there is some freedom to incorporate the density gradient, and therefore several versions of
GGA exist (first drawback). Moreover, in practice one often fits a candidate GGA-functional
with (hopefully only a few) free parameters to a large set of experimental data on atoms and
molecules. The best values for these parameters are fixed then, and the functional is ready
to be used routinely in solids. Therefore such a GGA-calculation is strictly spoken not an ab
initio calculation, as some experimental information is used (second drawback). Nevertheless,
there exist GGA’s that are parameter free.

7“Generalized”, because a straightforward gradient would result in a functional which violates some rela-
tionships which can be proven to be exact for the true functional (and for LDA)
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Figure 1.2: Illustration of the idea behind the LDA postulate. Every infinites-
imally small volume of the material contributes to the exchange-correlation
energy with an amount equal to the contribution of a homogeneous electron gas
that occupies that same infinitesimally small volume, and that has the same
(overall) charge density as the charge density of the original material in that
volume. The horizontal axis is proportional to the density of the homogeneous
electron gas. The vertical axis displays the exchange-correlation energy of the
homogeneous electron gas. (picture taken from Martin Fuchs, lecture notes,
ICTP Workshop august 1999)

1.3 Level 3: Solving the equations

Irrespective whether one has used HF or DFT as level 2 approximation, one ends up with an
infinite set of one-electron equations of the following type (m is an integer number that counts
the members of the set):

(
− h̄2

2me

~∇2
m +

e2

4πε0

∫ ρ(~r ′)
|~r − ~r ′| d~r

′ + Vα + Vext

)

︸ ︷︷ ︸
Ĥsp

φm(~r) = εm φm(~r) (1.22)

We call Ĥsp the single-particle hamiltonian. For HF, Vα is the exchange operator. The φm are
true one-electron (or single-particle) orbitals for HF. Exchange is treated exactly, but correlation
effects are not included at all. They can be added only in elaborations on the HF-method.

For DFT, Vα is the exchange-correlation operator, in the L(S)DA, GGA or another approx-
imation. Exchange and correlation are both treated, but both approximately. The φm are
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mathematical single-particle orbitals.

The similarity between the Hartree-Fock and Kohn-Sham equations means that the same
mathematical techniques can be used to solve them. ‘Solving’ in most methods means that we
want to find the coefficients cm

p needed to express φm in a given basis set φb
p:

φm =
P∑

p=1

cm
p φb

p (1.23)

The wave functions φm belong to a function space which has an infinite dimension, P is therefore
in principle infinite. In practice one works with a limited set of basis functions. Such a limited
basis will never be able to describe φm exactly, but one could try to find a basis that can
generate a function that is ‘close’ to φm.

Having chosen a basis (and hence a finite value for P ) we realize that we can tackle the
equations 1.22 as an eigenvalue problem, in the same way as described in Appendix C. For a
given m, substitute equation 1.23 in 1.22, and left-multiply with

〈
φb

i

∣∣∣ (i = 1, . . . , P ). As in
equation C.8, this leads to




· · · · · · · · ·
...

〈
φb

i

∣∣∣ Ĥsp

∣∣∣ φb
j

〉
− εm

〈
φb

i | φb
j

〉 ...

· · · · · · · · ·







cm
1
...

cm
P


 =




0
...
0


 (1.24)

We recognize here the matrix elements of the single-particle hamiltonian in the basis states,
and the overlap matrix elements Sij . Remember that the overlap matrix is a unit matrix
if the basis set is orthonormal. Diagonalization of the hamiltonian matrix will lead to P
eigenvalues and P sets of coefficients that express each of the P eigenfunctions in the given
basis (if more eigenfunctions are needed, P must be increased). The larger P , the better the
approximation of the eigenfunction, but the more time-consuming the diagonalization of the
matrix in equation 1.24.

In the following chapters, we will elaborate on this quick sketch. We will see that the label
m stands for the quantum numbers (n, ~k). It will be possible and advantageous to use a differ-

ent basis set for each ~k, which will enormously reduce the size of P , but will lead to as many
different eigenvalue problems to solve as there are ~k-vectors needed to be known.

What is a good basis set? If the functions of the basis set are very similar to φm, one needs
only a few of them to accurately describe the wave function, and hence P and the matrix size
are small. Such a basis set is called efficient. However, this assumes that you know the solution
of your problem almost before you start solving it. Such a basis set can therefore never be very
general: for some specific problems it will very quickly yield the solution, but for the majority
of cases it will poorly describe the eigenfunctions. In the latter cases the required P is much
higher than what is affordable, and limiting P would lead to approximate eigenfunctions that
are not acceptable. These approximations carry too much properties from the basis function,
and such a basis set is therefore called biased. The art of theoretical condensed matter physics
is to find a basis set that is a simultaneously efficient and unbiased. In the following chapters,
two families of basis sets will be described – plane waves and augmented plane waves – that
each in their own way try to realize this compromise.
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Chapter 2

The pseudopotential method (in brief)

At the end of section 1.3, we formulated two principal requirements for a basis set in which we
want to expand the eigenstates of the solid state hamiltonian: the basis set should be unbiased
(=it should not in a hidden way force the solution into a built-in direction) and efficient (=
P in equation 1.23 should be as low as possible). Furthermore, it would be nice if the basis
functions are mathematically simple. This makes both theory development and programming
work easier. A basis set that is certainly unbiased and simple is the plane wave basis set that
was introduced in section A.4. We saw in equation A.22 that any eigenfunction ψn

~k
of a periodic

hamiltonian can be expressed exactly in this basis set by means of an infinite set of coefficients

cn,~k
~K

:

ψn
~k
(~r) =

∑

~K

cn,~k
~K

ei(~k+ ~K)·~r (2.1)

This has to be compared with the general formulation in equation 1.23, where m stands for
(n, ~k) and p for ~k + ~K. One basis function for ψn

~k
(~r) (or ~K) is therefore:

φ
~k
~K
(~r) =

∣∣∣ ~K
〉

= ei(~k+ ~K)·~r (2.2)

Note that this basis-set is ~k-dependent: all eigenstates ψn
~k

that have the same ~k but a different

n will be expressed in the basis set with this particular value of ~k. For eigenstates with another
~k, a new basis set using that other ~k has to be used.

In practice we cannot work with an infinite basis set, and will have to limit it somehow (the

P in equation 1.23). For plane waves, this can be easily done by limiting the set to all ~K with
K ≤ Kmax . This corresponds to a sphere with radius Kmax centered at the origin of reciprocal
space. All reciprocal lattice vectors that are inside this sphere are taken into the basis set.
Instead of Kmax , often the free electron energy corresponding to Kmax is specified, and is called
the cut-off energy :

Ecut =
h̄2K2

max

2me

(2.3)

Plane waves are orthogonal:
〈

~K1| ~K2

〉
=

∫
ei( ~K2− ~K1)·~rd3~r (2.4)

= δ( ~K2 − ~K1) (2.5)

11
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Figure 2.1: Radial part of wave function (a) and radial probability distribution
(b) of a 3s electron in Ca (Y-axis has arbitrary units).

and therefore the overlap matrix S in equations C.18 or 1.24 is a unit matrix. The matrix
elements of the effective single-particle hamiltonian (Kohn-Sham hamiltonian) are calculated
in the plane wave basis, and the resulting matrix is diagonalized (see section C.3 for a description

of the full procedure). To each eigenvalue εn,~k an eigenvector
[
cn,~k

~K

]

P×1
of P values for cn,~k

~K

corresponds. Actually, an infinite number of eigenvectors, as multiplying with any real number
gives again an eigenvector (see Appendix C). This degree of freedom is used to take that[
cn,~k

~K

]

P×1
for which – by equation 2.1 – φn

~k
is a normalized function.

So far, so good. But: we were looking for the eigenvalue εn,~k of ψn
~k
, and instead of one

eigenvalue we found P of them, each with their own set of coefficients and hence each leading
to another eigenfunction ψn

~k
. What has happened? Each eigenfunction is uniquely labeled by n

and ~k. Eq. 2.1 applies for all our solutions with the same ~k. We are therefore forced to conclude
that for all these eigenfunctions, n – which does not explicitly appears in the equations – must
be different. In one go, we have found P different eigenfunctions with the same ~k but a different
band index!

This process has to be repeated for as many ~k-points that are needed for a densely enough
sampling of the first Brillouin zone.

We did not yet discuss the efficiency of a plane wave basis set. Will we need many or only
a few plane waves? The number of plane waves is determined by the smallest length scales
that are to be described in real space. Consider the radial part of a 3s wave function in Ca
(fig. 2-a). Near the nucleus, the wave function shows steep behaviour. In order to describe
the sharp part between 0 and the mimimum at 0.1 Å plane waves with a period as small as
roughly an order of magnitude less than this distance are needed (0.01 Å or 10−12 m). This
sets the order of magnitude for Kmax to Kmax = 2π/(10−12 m) = 6.3 · 1012 m−1. Calculate the
volume of a sphere with this radius (1039 m−3), divide it by the volume of the first Brillouin

zone (~c∗ · (~a∗ ×~b∗), about 9.2 · 1030 m−3 for a cubic lattice with a lattice constant of 3 Å), and

because the first Brillouin zone contains 1 ~K you find that about 108 plane waves are needed.
That would require diagonalization of (many) (108 × 108)-matrices, which is way beyond the
capability of even supercomputers.
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Should we conclude now that a plane wave basis set cannot be used? The most oscillating
part of the wave functions are the tails that reach out into the region close to the nucleus. But
this region of the solid is quite shielded from the more outer regions of the atoms where chemistry
happens, and the electrons will not behave very differently from free atom electrons here. One
can therefore replace the potential in these inner regions by a pseudopotential, that is designed
to yield very smooth tails of wavefunctions inside the atom (hence only a few plane waves are
needed). More to the outer regions of the atoms, the pseudopotential continuously evolves into
the true potential, such that this region of the crystal behaves as if nothing happened. In this
way, it is possible to use an (ultrasoft) plane wave basis set for realistic cases with a cut-off
energy Ecut = 20 Ry = 272 eV . This corresponds to Kmax ≈ 4.5 au−1, which for our example
of a cubic lattice with lattice constant 3 Å calls for about 270 plane waves1. A basis set of this
size is manageable.

There is no unique recipe to construct a pseudopotential for a particular element. An infinite
amount of choices are possible. Two criteria to judge whether a particular pseudopotential is
good, are softness and transferability. A pseudopotential is called soft when few plane waves
are needed. A specific class of pseudopotentials is even called ultrasoft, because of the very
small amount of plane waves it calls for. Generally, making a pseudopotential soft means that
it gets tailored for an element in a specific environment. What one really wants is a potential
that can be used in whatever environment (molecule, cluster, solid, surface, insulator, metal,...)
the corresponding element can be. Such a pseudopotential is called transferable. The art of
creating good pseudopotentials is to find potentials that are both (ultra)soft and transferable.

1Only accidentally similar to Ecut in eV .
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Chapter 3

The APW method

Although the pseudopotential method is extremely useful, there are reasons why alternatives
could be attractive. Is the introduction of the pseudopotential completely innocent? What do
you do if you are interested in information that is inherently contained in the region near the
nucleus (hyperfine fields for instance, or core level excitations)? Can the basis set be made more
efficient? Therefore, we will search for a basis set that uses other functions than plane waves,
and that does not require the introduction of a pseudopotential. Such a basis set will have to
be more efficient, but of course we do not want it to be biased. Our first example of this will
be the Augmented Plane Wave (APW) basis set. Right from the beginning it has to be said
that the APW-method itself is of no practical use any more today. But for didactical reasons
it is advantageous to discuss APW first, before going to its successors, LAPW and APW+lo.

The ideas that lead to the APW basis set are very similar to what made us to introduce the
pseudopotential. In the region far away from the nuclei, the electrons are more or less ‘free’.
Free electrons are described by plane waves1. Close to the nuclei, the electrons behave quite as
they were in a free atom, and they could be described more efficiently by atomic like functions.
Space is therefore divided now in two regions: around each atom2 a sphere with radius Rα is
drawn (call it Sα). Such a sphere is often called a muffin tin sphere, the part of space occupied
by the spheres is the muffin tin region. The remaining space outside the spheres is called the
interstitial region (call it I). One augmented plane wave (APW) used in the expansion of ψn

~k
is defined as:

φ
~k
~K
(~r, E) =





1√
V

ei(~k+ ~K)·~r ~r ∈ I

∑
`, m Aα,~k+ ~K

`m uα
` (r′, E)Y `

m(r̂′) ~r ∈ Sα

(3.1)

The symbols ~k, ~K and ~r keep their usual meaning, V is the volume of the unit cell. Note that
the APW basis set is ~k-dependent, as was the plane wave basis set. The position inside the
spheres is given with respect to the center of each sphere by ~r ′ = ~r−~rα (see fig. 3). The length
of ~r ′ is r ′, and the angles θ′ and φ′ specifying the direction of ~r ′ in spherical coordinates, are

indicated as r̂′. The Y `
m are spherical harmonics. The Aα,~k+ ~K

`m are yet undetermined parameters,
as is E. The latter has the dimension of energy. The uα

` are solutions to the radial part of

1Plane waves are eigenfunctions of a hamiltonian with zero potential.
2Mark the different atoms in the unit cell by a label α. This label is different for all atoms in the unit cell,

not just for all inequivalent atoms.
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Figure 3.1: Division of a unit cell in muffin tin regions and the interstitial
region, for a case with two atoms. The black dot is the origin of the axis
system (which may but need not to coincide with the nucleus of an atom).

the Schrödinger equation for a free atom α, and this at the energy E. For a true free atom,
the boundary condition that uα

` (r, E) should vanish for r →∞, limits the number of energies
E for which a solution uα

` can be found. But as this boundary condition does not apply here,
we can find a numerical solution for any E. Hence, the uα

` themselves do not correspond to
something physical, but that doesn’t harm: they are only part of a basis function, not of the
searched eigenfunction itself. And because they are close to how the actual eigenfunction will
look like in that region of the crystal, they will do their job as basis function very efficiently.

If an eigenfunction would be discontinuous, its kinetic energy would not be well-defined.
Such a situation can therefore never happen, and we have to require that the plane wave
outside the sphere matches the function inside the sphere over the complete surface of the
sphere (in value, not in slope). That seems a weird thing to do: a plane wave is oscillating and
has a unique direction built in, how can it match another function based on spherical harmonics
over the entire surface of a sphere? To see how this is possible, we expand the plane wave in
spherical harmonics about the origin of the sphere of atom α:

1√
V

ei(~k+ ~K)·~r =
4π√
V

ei(~k+ ~K)·~rα
∑

`,m

i`j`

(∣∣∣~k + ~K
∣∣∣ |~r′|

)
Y `∗

m

(
ˆ~k + ~K

)
Y `

m (r̂′) (3.2)

j`(x) is the Bessel function of order `. Requiring this at the sphere boundary (where ~r ′ = ~Rα,

which defines ~Rα) to be equal to the `m-part of Eq. 3.1 easily yields:

Aα,~k+ ~K
`m =

4πi`ei(~k+ ~K)·~rα

√
V uα

` (~Rα, E)
j`

(∣∣∣~k + ~K
∣∣∣ Rα

)
Y `∗

m (
ˆ~k + ~K) (3.3)

This uniquely defines the Aα,~k+ ~K
`m , apart from the still undetermined E. In principle there are

an infinite number of terms in Eq. 3.2, which would force us to use an infinite number of Aα,~k+ ~K
`m
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Figure 3.2: In a) and b), a great circle for some arbitrary value of φ is drawn.
The points on the circle for which a) Y `=2

m=2 or b) Y `=2
m=1 is zero, are indicated

by white points. In a) there are no other points on which Y `=2
m=2 is zero. In b)

all other such points for Y `=2
m=1 fall on a horizontal circle with θ = π/2 (point-

dashed circle). In both cases, the number of zeros along a great circle is at most

2 · `. Remember: Y `=2
m=2 = 1

4

√
15
2π

sin2 θ e2iφ and Y `=2
m=1 = −

√
15
8π

sin θ cos θ eiφ.

in order to create the matching. In practice we will have to truncate at some value `max . What
would be a reasonable choice? For a given `max , Y `max

m (θ, φ) can have at most 2`max nodes along
a great circle (i.e. θ = 0 → 2π for any fixed φ) of the α-sphere (see fig. 3). Converted into nodes
per unit of length, this is 2`max/(2πRα) = `max/(πRα). If a plane wave should match with
this, there should be plane waves with at least a similar number of nodes per unit of length
available. The plane wave with the shortest period 2π/Kmax has 2/(2π/Kmax ) = Kmax/π nodes
per unit of length. The cut-off for the plane waves (Kmax ) and for the angular functions (`max )
are of comparable quality if the number of nodes per unit of length is identical. This yields
the condition RαKmax = `max . This allows to determine a good `max for a given Kmax . A finite
value for `max means that for each APW the matching at the sphere boundaries will not be
exact, but good enough to work with. It is not useful to make `max larger than the condition
RαKmax requires, as it would lead to unstable behaviour at the sphere boundary (you can
compare this with fitting a polynomial of high order through a limited number of points: the
fit will be ‘perfect’, but not very meaningful). Therefore, it is also clear now that the muffin
tin radii for the different atoms should not be too different: if they were, a value for `max that
is suitable for each atom would not exist.

Now you should be able to visualize the meaning of a single APW φ
~k
~K
(~r, E) of equation 3.1:

it is an oscillating function that runs through the unit cell. Whenever it encounters an atom on
its path, the simple oscillating behaviour is changed into something more complex inside the
muffin tin sphere of that atom. Nevertheless, the function values inside and outside the sphere

smoothly match, which is taken care of by a set of
∑`max

`=1 2`max + 1 coefficients Aα,~k+ ~K
`m that is

different for each atom (the atom determines α, the APW under consideration determines ~k

and ~K, all ` up to `max are present, with the corresponding values of m).

At first sight, it looks like we can now use the APW’s as a basis set, and proceed in the same
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Figure 3.3: A suggestive visualization of how the roots of the secular equa-
tion are searched. (picture copied from K. Schwarz et al., Computer Physics
Communications 147 (2002) 71)

way as for the plane wave basis set in order to determine the coefficients cn,~k
~K

in the expansion
of the searched eigenfunction. However, this does not work. We did not settle the parameter E
yet. It turns out that in order to describe an eigenstate ψn

~k
(~r) accurately with APW’s, one has

to set E equal to the eigenvalue (or band energy) εn
~k

of that state. But this is exactly what we
are trying to determine! We are hence forced to start with a guessed value for εn

~k
and take this

as E. Now we can determine the APW’s, and construct the hamiltonian matrix elements and
overlap matrix (the APW’s are not orthogonal). The secular equation is determined, and our
guessed εn

~k
should be a root of it. Usually it is not, hence we have to try a second guess. Due

to this new E, the APW’s have to be determined again, and similarly for all matrix elements.
With the help of root determination algorithms, this guessing continues until a root – say ε

(n=1)
~k

– is found. And then the whole procedure starts over for ε
(n=2)
~k

, etc. (see fig. 3 for a suggestive
visualization of the roots of a secular equation, and fig. 3 for a flow chart of the APW method).

In practice, Kmax ≈ 3.5 au−1 is needed for sufficient accuracy. This is less than the typical
value of 5.5 for plane waves and pseudopotentials. As on page 12, the basis set size can be
estimated to be about P = 131 for APW, compared to roughly P = 270 for plane waves. The
calculation time (mainly determined by matrix diagonalization) scales with the third power
of the basis set size, which would suggest APW to be 10 times faster than pseudopotentials.
However, with a plane wave basis set, P eigenvalues are found by a single diagonalization, while
with APW one diagonalization is needed for every eigenvalue. This makes the APW method
inherently slow, much slower than the pseudopotential method.
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Figure 3.4: Flowchart of the APW method.
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Chapter 4

The LAPW method

4.1 The regular LAPW method

The problem with the APW method was that the uα
` (r′, E) have to be constructed at the –

yet unknown – eigenenergy E = εn
~k

of the searched eigenstate. It would be helpful if we were
able to recover uα

` (r′, εn
~k
) on the fly from known quantities. That is exactly what the Linearized

Augmented Plane Wave method enables us to do. If we have calculated uα
` at some energy E0,

we could make a Taylor expansion to find it at energies not far away from it:

uα
` (r′, εn

~k
) = uα

` (r′, E0) + (E0 − εn
~k
)

∂uα
` (r′, E)

∂E

∣∣∣∣∣
E=E0︸ ︷︷ ︸

u̇α
`
(r′,E0)

+ O(E0 − εn
~k
)2 (4.1)

Substituting the first two terms of the expansion in the APW for a fixed E0 gives the definition
of an LAPW. This has a price: the energy difference (E0 − εn

~k
) is unknown, and hence a yet

undetermined Bα,~k+ ~K
`m has to be introduced:

φ
~k
~K
(~r) =





1√
V

ei(~k+ ~K)·~r ~r ∈ I

∑
`, m

(
Aα,~k+ ~K

`m uα
` (r′, E0) + Bα,~k+ ~K

`m u̇α
` (r′, E0)

)
Y `

m(r̂′) ~r ∈ Sα

(4.2)

In order to determine both Aα,~k+ ~K
`m and Bα,~k+ ~K

`m , we will require that the function in the sphere
matches the plane wave both in value and in slope at the sphere boundary. This can be done
by using an expression similar to equation 3.2 and its radial derivative. This results in a 2× 2
system from which both coefficients can be solved.

Equation 4.2 is not the final definition of an LAPW yet. Imagine we want to describe an
eigenstate ψn

~k
that has predominantly p-character (` = 1) for atom α. This means that in its

expansion in LAPW’s, the Aα,~k+ ~K
(`=1)m are large. It is therefore advantageous to choose E0 near the

centre of the p-band (how this can be done will be made clear in the examples of Chapter 6).
In this way, the O(E0− εn

~k
)2-term in equation 4.1 will remain small, and cutting after the linear

term is certainly allowed. We can repeat this argument for every physically important ` (s-,
p-, d- and f-states, i.e. up to ` = 3) and for every atom. As a result, we should not choose one
universal E0, but a set of well-chosen Eα

1,` up to ` = 3 (the meaning of the index ‘1’ will become
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clear in section 4.2. For higher `, a fixed value can be kept. The final definition of an LAPW
is then:

φ
~k
~K
(~r) =





1√
V

ei(~k+ ~K)·~r ~r ∈ I

∑
`, m

(
Aα,~k+ ~K

`m uα
` (r′, Eα

1,`) + Bα,~k+ ~K
`m u̇α

` (r′, Eα
1,`)

)
Y `

m(r̂′) ~r ∈ Sα

(4.3)

With the Eα
1,` being fixed, the basis functions can be calculated once and for all. The same

procedure as used for the plane wave basis set can now be applied. One diagonalization will
yield P different band energies for this ~k.

The accuracy of a plane wave basis set was determined by Kmax . For the APW or LAPW
basis set, it is not incorrect to use the same criterion. However, a better quantity to judge the
accuracy here is the product Rmin

α Kmax between the smallest muffin tin radius and Kmax . This
can be understood as follows. If the smallest muffin tin radius is increased, the closest point a
plane wave can come to a nucleus moves farther away from the nucleus. The part of the wave
function that need not to be described with plane waves any more, in general will have displayed
the steepest behaviour, steeper than anywhere else in the interstitial region (it was closest to
the nucleus). Less plane waves are needed to describe the remaining, smoother parts of the
wave function. Kmax can be reduced, and a good rule of thumb is that the product Rmin

α Kmax

should remain constant in order to have comparable accuracy. Reducing Kmax means reducing
the size of the matrices, and because matrix diagonalization is very expensive, a larger Rmin

α

can significantly reduce the computation time. Rmin
α cannot be too large on the other hand,

as the spherical harmonics are not suited to describe the wave functions in the region far away
from the nuclei.

Compared to a plane wave basis set, the LAPW basis set can be much smaller. The required
Kmax turns out to be Kmax = 7.5↔9.0

Rmin
α

≈ 4 au−1, depending on the desired accuracy. This yields

P ≈ 195 as basis set size, compared to P ≈ 270 for plane waves. The calculation time (mainly
determined by matrix diagonalization) scales with the third power of the basis set size, which
makes LAPW in this respect about 2 to 3 times faster than plane waves. There are other
aspects however that slow down LAPW1, such that in the end it is comparable in speed with
plane waves.

4.2 LAPW with Local Orbitals (LAPW+LO)

It was not explicitly stated so far which electron states are calculated with the LAPW method.
Does it make sense to calculate the 1s orbital of Fe in bcc-Fe? No, because this electron is
extremely well bound to the nucleus (-514 Ry), and will behave almost exactly as if it were in
a free Fe atom. Such a state is called a core state. The criterion for a core state is that it does
not participate directly in chemical bonding with other atoms. Therefore, it must be contained
entirely in the muffin tin sphere. States that leak out of the muffin tin sphere, are called valence
states. Valence states participate in chemical bonds, and these states are treated by LAPW.
Core states are treated as in free atoms, but subject to the potential due to the valence states.

When applying this definition, it frequently happens that states with the same ` but a dif-
ferent principal quantum number n are both valence states. For instance, due to hybridisation,

1The non-orthogonal basis set for instance.
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Fe in bcc-Fe will have a non-negligible amount of 4p-character in its valence states that are
about 0.2 Ry below the Fermi level. But the 3p-states that are 4.3 Ry below the Fermi level are
not entirely confined in the core too. Such low-lying valence states are called semi-core states.
It is not clear how EFe

1,(`=1) should be chosen: close to 3p, close to 4p, at an intermediate value,
. . .? None of the choices is optimal. This dilemma is solved by adding another type of basis
function to the LAPW basis set, called a local orbital (LO). A local orbital is defined as:

φ`m
α,LO(~r) =





0 ~r /∈ Sα

(
Aα,LO

`m uα
` (r′, Eα

1, `) + Bα,LO
`m u̇α

` (r′, Eα
1, `) + Cα,LO

`m uα
` (r′, Eα

2, `)
)
Y `

m(r̂′) ~r ∈ Sα

(4.4)

A local orbital is defined for a particular ` and m, and for a particular atom α. A local orbital
is zero in the interstitial region and in the muffin tin spheres of other atoms, hence its name
local orbital. In the muffin tin sphere of atom α, the same uα

` (r′, Eα
1, `) and u̇α

` (r′, Eα
1, `) as in

the LAPW basis set are used, with as linearization energy Eα
1, ` a value suitable for the highest

of the two valence states (4p in our example)2. The lower valence state – that is much more
free-atom-like – is sharply peaked at an energy Eα

2, `. A single radial function uα
` (r′, Eα

2, `) at that
same energy will be sufficient to describe it. Local orbitals are not connected to plane waves in
the interstitial region, they have hence no ~k- or ~K-dependence. The three coefficients Aα,LO

`m ,
Bα,LO

`m and Cα,LO
`m are determined by requiring that the LO is normalized, and has zero value

and zero slope at the muffin tin boundary (= it does not leak out of the muffin tin sphere).
Adding local orbitals increases the LAPW basis set size. If for each atom local orbitals for

p- and d-states are added, the basis set increases with 3+5=8 functions per atom3 in the unit
cell. This number is rather small compared to typical LAPW basis set sizes of a few hundred
functions. The slightly increased computational time is a small price to be paid for the much
better accuracy that local orbitals offer, and therefore they are always used.

2Linearization energies for two atoms that are equivalent, are taken to be equal.
3Indeed, the more atoms in the unit cell, the more LO’s have to be added. In contrast to this, the number

of LAPW’s does not depend on the number of atoms in the unit cell, but – for a fixed Rmin
α Kmax and cell

symmetry – on the volume of the unit cell, independent on how many atoms appear in it (more atoms mean
just more sets of coefficients Aα,~k+ ~K

`m and Bα,~k+ ~K
`m ).
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Chapter 5

The APW+lo method

5.1 The ‘pure’ APW+lo basis set

The problem with the APW method was the energy dependence of the basis set. This energy
dependence could be removed in the LAPW+LO method, at the cost of a somewhat larger
basis set size1. In the APW+lo method that will be described now, the basis set will be energy
independent and still have the same size as in the APW method. In this sense, APW+lo
combines the good features of APW and LAPW+LO.

The APW+lo basis set contains two kinds of functions. The first kind are APW’s, with a
set of fixed energies Eα

1,`:

φ
~k
~K
(~r) =





1√
V

ei(~k+ ~K)·~r ~r ∈ I

∑
`, m Aα,~k+ ~K

`m uα
` (r′, Eα

1,`)Y
`
m(r̂′) ~r ∈ Sα

(5.1)

We know from the discussion in Chapter 3 that with fixed energies this basis set does not give
a good description of the eigenfunctions. The basis set is therefore augmented with a second
type of functions. These are local orbitals, but another type as the one used in connection with
the LAPW method. We abbreviate them therefore as ‘lo’ instead of as ‘LO’. Their definition
is:

φ`m
α, lo(~r) =





0 ~r /∈ Sα

(
Aα,lo

`m uα
` (r′, Eα

1,`) + Bα,lo
`m u̇α

` (r′, Eα
1,`)

)
Y `

m(r̂′) ~r ∈ Sα

(5.2)

The same set of energies Eα
1,` is used as for the corresponding APW’s (although this is not

strictly needed). The two coefficients Aα,lo
`m and Bα,lo

`m are determined by normalization, and
by requiring that the local orbital has zero value at the muffin tin boundary (not zero slope).
Hence, both the APW and the local orbital are continuous at the sphere boundary, but for
both their first derivative is discontinuous.

For accurate results, the APW+lo basis set appears to require a size that is comparable to
the APW method (Kmax ≈ 3.5 au−1, P ≈ 130). This is less than in the LAPW+LO method

1Due to LAPW itself, and due to adding local orbitals.
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(Kmax ≈ 4 au−1, P ≈ 200). Nevertheless, P eigenvalues are obtained by a single diagonaliza-
tion, as in LAPW+LO.

5.2 Mixed LAPW/APW+lo basis sets

The reason why LAPW needs a higher Kmax than APW+lo can be traced back to a few states
that are hard for LAPW. They are:

• Valence d- and f-states.

• States in atoms that have a muffin tin sphere that is much smaller than others spheres in
the unit cell.

It is advantageous to treat those states with APW+lo, and keep using LAPW for all other
states. Why? Using APW+lo for a state means that per atom 2` + 1 local orbitals are added
to the basis set. This makes an APW+lo basis set for the same Rmin

α Kmax considerably larger
than the LAPW basis set. This is compensated by the fact that a lower Rmin

α Kmax is needed
for accurate results, but nevertheless, it is better to use these extra basis functions only there
where they are useful. Such an approach leads to a mixed LAPW/APW+lo basis set: for all
atoms α and values of `, equation 4.2 is used. But for one or more atoms α0 (r ∈ Sα0) and one
or more `0, equation 5.1 is used. Corresponding φ`0m

α0
according to equation 5.2 are then added

to the basis set. Such a mixed basis set is the recommended choice in WIEN2k.

5.3 APW+lo with Local Orbitals (APW+lo+LO)

With APW+lo basis functions, the same problem with semi-core states appears as described
in section 4.2. It will be remediated in the same way: by adding Local Orbitals (LO). The
definition of a local orbital for APW+lo is:

φ`m
α,LO(~r) =





0 ~r /∈ Sα

(
Aα,LO

`m uα
` (r′, Eα

1, `) + Cα,LO
`m uα

` (r′, Eα
2, `)

)
Y `

m(r̂′) ~r ∈ Sα

(5.3)

In contrast to the LO for LAPW, there is no derivative of uα
` here. The two coefficients Aα,LO

`m

and Cα,LO
`m are determined by the requirement that the LO is normalized, and has zero value

(not zero slope) at the sphere boundary.



Chapter 6

Examples for WIEN2k

In this chapter, various “real life” situations that you will encounter while working with WIEN2k
are discussed in detail. It is assumed that you know how to set up a simple case. Working
through these examples will give you a better understanding of several input and output files,
and it will show you strategies for setting up meaningful but economical calculations.

6.1 Linearization energies in LAPW and APW+lo

In this example, mainly the input file case.in1 for WIEN2k and some output that is related to
the basis set will be discussed. The file case.in1 contains crucial information for the LAPW
and APW+lo methods. As our example, we take non-magnetic bcc Fe (B-type lattice with
atom at (0, 0, 0), or alternatively space group Im3̄m (nr. 229)) at the experimental lattice
constant a = 5.4169 au, and with a muffin tin radius Rmt = 2.2 au.

6.1.1 Default initialization for LAPW

In this section, you will produce some starting information without much thinking. Don’t try
yet to understand what happens at this stage, reasoning will follow later.

Initialize the Fe case, using -6.0 Ry and GGA in lstart, 500 k-points1 in the full first
Brillouin zone (20 in the irreducible part) in kgen, and the mixing factor at 0.10 in case.inm.
Use the following case.in1:

WFFIL (WFPRI, SUPWF)

7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT

0.30 4 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)

1 0.30 0.000 CONT 0

1 -3.97 0.005 STOP 0

2 0.30 0.010 CONT 0

0 0.30 0.000 CONT 0

K-VECTORS FROM UNIT:4 -7.0 2.5 emin/emax window

Compared to the default file, emax is changed from 1.5 to 2.5 (in order to see the Density Of
States (DOS) over a larger energy window) and the LAPW-method is chosen. The latter is

1This value is way to low for an accurate calculation, but it provides a fast example – ready while you wait.
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done by changing NAPWL at the end of the 4 lines from 1 to 0, but we will soon treat this in
more detail. Now iterate this case to selfconsistency2, and produce the DOS with the following
case.int:

bcc-Fe

-0.50 0.001 3.000 0.003 EMIN, DE, EMAX, Gauss-broadening(>de)

7 NUMBER OF DOS-CASES specified below

0 1 Cryst-tot atom, case=column in qtl-header, label

1 1 Fe-tot

1 2 Fe-s

1 3 Fe-p

1 4 Fe-d

1 7 Fe-f

2 1 Inter

This produces the total DOS of the crystal (first line), the total DOS inside the Fe muffin tin
sphere, The s-DOS of Fe inside the sphere, similarly for the p-, d- and f-DOS of Fe, and the
total DOS in the interstitial region. These results are shown in fig. 6.1.1 3. The Fermi energy
(:FER) – indicated by a vertical line in fig. 6.1.1 – is close to 0.66 Ry4 (in your less precise
calculation, you will find 0.63 Ry).

6.1.2 Choosing linearization energies for LAPW+LO

We will now scrutinize case.in1 and interpret the DOS we obtained in fig. 6.1.1. The value
‘7.00’ in the first line of case.in1 is the product of the minimal muffin-tin radius Rmin

mt (here 2.2
au) and the Kmax discussed in Chapter 4. By ‘7.00’, we have asked for Kmax = 7.00/2.2 = 3.2
au−1. Following the reasoning on page 125, this gives an estimate for the basis set size of 43.
Now check the label :RKM in case.scf:

:RKM : MATRIX SIZE 49LOs: 3 RKM= 6.85 WEIGHT= 8.00

This tells you that the actual number of LAPW’s is 46 (the total basis set size (49) minus the
number of local orbitals (3))6

2-cc 0.00005 is a sufficient criterion.
3The pictures are made with a k-mesh of 165 points. Your results with 20 k-points will look a little bit more

shaky, but they should show the same main features.
4In a free atom, the zero of the energy scale is chosen such that the potential is zero at infinite distance from

the atom. In an infinite lattice, this is not possible. In WIEN2k, the zero corresponds to the average potential
in the interstitial region. Whenever an energy is expressed in Ry, it is relative to this zero. The DOS can be
chosen to be plot against a Ry-scale (and then this zero is used) or against a scale in eV. In the latter case, the
Fermi energy is taken zero by default.

5The volume of the first Brillouin zone for Fe can be calculated to be VBZ = 8π3/V = 3.1212au−3. Here
V is the volume of the unit cell in direct space, which is for the bcc structure one half of the volume of the
conventional cube (V = (5.4169au)3/2). This volume can always be found at the :VOL label in case.scf.
Alternatively, VBZ can be found by equations A.14 to A.16, considering that ~a = (a, 0, 0), ~b = (0, a, 0) and
~c =

(
a
2 , a

2 , a
2

)
with a the lattice constant.

6Our value of 43 is an estimate, not an exact value. The unit cell of Fe is quite small, hence the distances
between ~K-points are large. Kmax = 3.2 au−1 is not very large. Our estimate approximates the number of
~K-points in a sphere with radius Kmax , and for a small radius the surface region is rather important relative
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Figure 6.1: DOS for nonmagnetic bcc-Fe. The dashed line is the Fermi energy.
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The number ‘10’ to the right of Rmin
mt Kmax is the `max from page 17. The ‘4’ to the right of

it, is not discussed in the preceding sections (it is highest ` in the expansion of the potential in
lattice harmonics, a kind of spherical harmonics that is adapted to the symmetry of the lattice).

In the next line, the ‘0.30’ is the Eα
` (` = 1, . . . , `max , α = Fe) of equation 4.2, expressed

in Ry7. The ‘4’ to the right means that for 4 values of ` an exception will be made. These
4 exceptions will be listed below. The ‘0’ to the right means that for all ` an LAPW is used,
except if explicitly stated otherwise (with ‘1’, an APW would be used everywhere).

Is the general choice Eα
` = 0.30 Ry a good choice? Look at the total crystalline DOS of

fig. 6.1.1. The valence region starts from about +0.05 Ry. As our calculations are by definition
at 0 K (DFT is a ground state theory), we want to describe in the first place the region between
0.05 Ry and EF =0.66 Ry. If we take a fixed energy at 0.30 Ry, then it falls right in the middle of
this region of interest. This is what we want, as in this way linearization errors are minimized.
If you would see that your valence band region covers for instance the region 0.35-0.90 Ry,
a better choice for Eα

` would be 0.62 Ry (the arithmetic mean of the valence band region).
Applying this procedure in the case of bcc Fe would lead to Eα

` = 0.35 Ry. This is so close
to the original 0.30 Ry that it is hardly worth changing it, but we will nevertheless do it as a
demonstration.

The following 4 lines list exceptions to this general choice of Eα
` . The first number in each

line is `. The first line (with ` = 1) gives Eα
` for p-states (the p-states that are in the valence

band region for Fe, are the 4p). A look at fig. 6.1.1 learns that the main weight of the occupied
part of the p-band is roughly at 0.50 Ry. Eα

`=1 = 0.50 Ry will minimize the linearization
error for the p-band. To the right there is a number ‘0.000’. It means that starting from the
chosen value for Eα

`=1, a better linearization energy will be searched by making steps of the size
‘0.000’. Hence, in this case no search will be done. The CONT means that even if no acceptable
linearization energy would be found (in the case there would have been done a search), the
program will nevertheless continue.

The second line we skip for a while. The third line is for ` = 2 (Fe-3d). From looking at
fig. 6.1.1, a good value for Eα

`=2 would be about 0.50 Ry. Here, a search was asked, with a step
of 0.010 Ry. What has been the result of that search? Look in the last iteration of case.scf
for this block:

ATOMIC SPHERE DEPENDENT PARAMETERS FOR ATOM Fe

OVERALL ENERGY PARAMETER IS 0.3000

OVERALL BASIS SET ON ATOM IS LAPW

E( 1)= 0.3000

LAPW

E( 1)= -3.3025 E(BOTTOM)= -3.375 E(TOP)= -3.230

LOCAL ORBITAL

E( 2)= 0.5200 E(BOTTOM)= 0.200 E(TOP)= 0.840

LAPW

E( 0)= 0.3000

LAPW

to the volume. Details of the reciprocal lattice will determine whether certain ~K are just inside or just outside
this sphere. For larger unit cells (try with the Fe lattice constant increased to 6.5 au) or larger Kmax (try with
Rmin

mt Kmax = 9), the estimate reproduces almost the exact basis set size. A question to test yourself: explain
why in both of these cases the basis set size increases (77 and 92, respectively).

7Remember: using the same energy scale as for the Fermi energy.
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There you see that in the first line no search was done for Eα
`=1 and the 0.30 Ry was kept.

The second line we skipped. In the third line, the bottom of the d-band was determined as
0.20 Ry. If you blow up your own version of fig. 6.1.1, you will see the d-band starts at about
0.05 Ry and gets appreciable values near 0.14 Ry 8. The top of the d-band is determined as
0.84 Ry, which is also acceptable from fig. 6.1.1. The arithmetic mean 0.52 Ry is taken as the
linearization energy. This is close to our estimate. It does not matter whether we will take 0.50
or 0.52 Ry as Eα

`=2. Both are close enough to the center of the band.

The next line deals with ` = 0 (Fe-4s). From fig. 6.1.1, a good linearization energy seems
to be Eα

`=0 = 0.30 Ry (this is accidentally very close to the overall Eα
` ).

There was one line we skipped. It had a label ` = 1, and follows the line that set Eα
`=1.

Such a second line is used to define a local orbital (LO) according to equation 4.4. In this case,
the local orbital will describe Fe-3p states. The energy from the first line with ` = 1 is used as
Eα

1,(`=1). The current line is used to specify Eα
2,(`=1). In all cases, the energy suggested by the

program can be accepted for a LO. Local orbitals are much tighter bound than valence states,
and therefore their energy is sharply defined. You can see from the output in case.scf given
above that bottom and top of the 3d-band are very close together, almost uniquely defining
Eα

2,(`=1). This is also the reason why a label ‘STOP’ is used: if the program does not succeed to
find such a well-defined energy, something must be wrong. The calculation will then terminate.

There are 3 possible m-values for ` = 1. Therefore 3 LO’s will be added to the basis set,
one for each m. If there would have been another Fe atom at an inequivalent position, the
same would happen there, increasing the number of LO’s. In the output from case.scf above,
indeed ‘LOs: 3’ was reported.

It is now also clear why no LO’s are needed for the other possible candidate, Fe-3s: these
states will be even better bound than -3.7 Ry. Apparently they are at energies lower than
-6.0 Ry, which was during the initialization in lstart used as the criterion to distinguish
between core and valence states. States below -6.0 Ry are core states, and are not described
by the the LAPW+LO basis.

The last line in case.in1 tells that the ~k-vectors at which eigenvalues and eigenfunctions
are calculated, are read from the default file created by kgen. And that eigenvalues are searched
in an energy region between -7.0 Ry and +2.5 Ry.

After this analysis, we can construct a better case.in1 that will lead to a more precise
calculation. One possibility is:

WFFIL (WFPRI, SUPWF)

7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT

0.35 4 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)

1 0.50 0.000 CONT 0

1 -3.97 0.005 STOP 0

2 0.50 0.010 CONT 0

0 0.30 0.000 CONT 0

K-VECTORS FROM UNIT:4 -7.0 2.5 emin/emax window

8See the Usersguide, section about lapw1, to see how this is determined: the Eb for which u`=2(r, Eb) has
zero slope at r = Rmt is taken as the bottom of the band (bonding state). The Et for which u`=2(r, Et) has
zero value at r = Rmt is taken as the top of the band (antibonding state).
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The changes in Eα
`=1 will influence (improve) our calculation. The changes in the global Eα

` and
in Eα

`=0 were zero or small. If this would not have been the case, they would have improved
the calculation as well. The change in Eα

`=2 will have no effect, it only avoids some searching.
Alternatively, we could even omit the searching by putting:

2 0.52 0.000 CONT 0

In this specific case, where accidentally Eα
`=0 ≈ Eα

` , we could also omit the line with ` = 0 (and
change the number of exceptions from 4 to 3).

There is another way in which the accuracy of the calculation can be improved9. In the
output from the initialization program lstart, you can see that the Fe-3s states are close to
the energy -6.0 Ry that separates core and valence states:

19 350

19 3.65E-07 1.918188E+00

-514.09504 -514.09427

-60.04156 -59.96008

-51.73511 -51.67440

-50.81845 -50.75597

-6.80000 -6.61035

-4.38376 -4.19666

-4.27103 -4.08485

-0.47568 -0.30733

-0.46495 -0.29712

-0.37634 -0.30776

The left column is for spin-up, the right for spin-down. Both columns list energies (in Ry,
relative to the zero-level for a free atom) for Fe-states in the order that can be found at the be-
ginning of the file. In this case: 1s, 2s, 2p∗, 2p, 3s, 3p∗, 3p, 3d∗, 3d, 4s. The ‘*’ indicates states
with a different relativistic quantum number. The Fe-3s (6th line from the bottom, energy of
about -6.7 Ry) are considered as core states, but they are close to the separating -6.0 Ry. This
is confirmed if we look at the energy of this state in the crystal (in Ry, relative to the zero-level
in the crystal) in case.scf:

1.ATOM 5 CORE STATES

:1S 01: 1S -513.202669 Ry

:2S 01: 2S -59.139463 Ry

:2PP01: 2P* -50.840718 Ry

:2P 01: 2P -49.923370 Ry

:3S 01: 3S -5.784221 Ry

If you give -7.0 Ry as input for lstart, then the Fe-3s will be taken as valence states. In
case.outputst, you will see these lines (with -6.0 Ry):

9Whenever we speak here about ‘improving accuracy’ it means ‘as far as the linearization energies and local
orbitals are concerned’. Of course you should also consider the size of the basis set itself, by the choice of
Rmin

mt Kmax , and the sampling of the first Brillouin zone by the size of the k-mesh.
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TOTAL CORE-CHARGE: 12.00000000005831

TOTAL CORE-CHARGE INSIDE SPHERE: 11.99785897382221

that with -7.0 Ry will change into:

TOTAL CORE-CHARGE: 10.00000000005758

TOTAL CORE-CHARGE INSIDE SPHERE: 9.999999992285076

Instead of 12 core electrons, there are only 10 now (two Fe-3s are considered as valence now).
A charge of 0.00214 electrons was leaking out of the core with the Fe-3s included. If they are
valence electrons, the remaining 10 core electrons let only a charge of 0.000000008 leak out of
the core.

The program will suggest a new case.in1 now, including an LO for Fe-3s. After incorpo-
rating our previous changes, it will look like:

WFFIL (WFPRI, SUPWF)

7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT

0.35 5 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)

0 0.30 0.000 CONT 0

0 -6.50 0.005 STOP 0

1 0.50 0.000 CONT 0

1 -3.97 0.005 STOP 0

2 0.52 0.000 CONT 0

K-VECTORS FROM UNIT:4 -8.0 2.5 emin/emax window

A last noteworthy point is, that it can sometimes be useful to increase the basis set by extra
LO’s with an energy in the region way above the Fermi energy. This increases the flexibility
of the basis set in that energy region, and allows a better description of the unoccupied states.
For Fe, this extra flexibility turns out to be necessary in order to obtain a good total energy
(energy-versus-volume curves without this extra LO display scatter, with the extra LO they
are smooth). The energy for such an LO has to be set fixed. Check that you will have 9 local
orbitals now in your calculation (in the line with :RKM, you will read LOs: 9): the 3 that
where there from the 3p-electrons, 1 which we added for the 3s, and 5 from the high-lying 4d.
This would then be our final case.in1:

WFFIL (WFPRI, SUPWF)

7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT

0.35 6 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)

0 0.30 0.000 CONT 0

0 -6.50 0.005 STOP 0

1 0.50 0.000 CONT 0

1 -3.97 0.005 STOP 0

2 0.52 0.000 CONT 0

2 1.50 0.000 CONT 0

K-VECTORS FROM UNIT:4 -8.0 2.5 emin/emax window

Really accurate LAPW+LO calculations for bcc-Fe can be made with this case.in1, and with
Rmin

mt Kmax = 9.0 and 406 points in the k-mesh.
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6.1.3 Choosing linearization energies for APW+lo

The procedure for APW+lo is very similar as for LAPW+LO. According to section 5.2, we can
keep using LAPW+LO for most states. Only for Fe-3d we should switch to APW+lo. This
leads to the following case.in1:

WFFIL (WFPRI, SUPWF)

7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT

0.35 6 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)

0 0.30 0.000 CONT 0

0 -6.50 0.005 STOP 0

1 0.50 0.000 CONT 0

1 -3.97 0.005 STOP 0

2 0.52 0.000 CONT 1

2 1.50 0.000 CONT 1

K-VECTORS FROM UNIT:4 -8.0 2.5 emin/emax window

It doesn’t matter very much whether you take APW+lo or LAPW for the high-lying d local
orbital. But for the regular 3d states it has an effect. First of all, you can see in the :RKM-
line that 5 functions has been added to the basis set, due to 5 additional lo’s. Indeed, in the
APW+lo method, 2` + 1 local orbitals of the type as defined in Eq. 5.2 are added for each
regular state, not for deeper states with the same n only, as was the case in LAPW. APW+lo
increases the basis set, which should slow down your calculation. You can check for the accurate
calculation (Rmin

mt Kmax = 9.0 and 406 points in the k-mesh) that it needs slightly more time
for 1 iteration than LAPW. However, if you do a series of calculations with different RmtKmax ,
with APW+lo you will reach converged values at a lower RmtKmax , which will substantially
lower the basis set size (an the time) you need to obtain an accurate result (see also section 6.2).

6.1.4 Automatic determination of linearization energies

There is a way to determine the linearization energies needed in case.in1 automatically. It
requires less thinking than doing it yourself as explained in the previous sections, but it can
also be a source of errors if the automatic procedure does not do exactly what you expected
it to do. If you start calculating on a new compound, it might be wise to think about the
linearization energies yourself first. Later on, when you are familiar with the kind of DOS that
can be expected, you can switch to the automatic procedure.

The automatic procedure first needs to know what are true valence states, and what are
states that are treated as LO’s (semi-core states). The semi-core states are separated by a gap
from the continuous region of valence states. By the following line in case.in2:

-9.0 14.0 0.50 0.05 EMIN, NE, ESEPERMIN, ESEPER0

the program is told that it should start to look at E0
seper = 0.05 Ry below the Fermi energy,

for a gap between states with a width of at least Emin
seper = 0.50 Ry. In our Fe-example where

the Fermi energy is about 0.66 Ry, it will start to search at 0.66-0.05=0.61 Ry. Then it goes
downwards, and at about 0.05 Ry it finds a gap that extends down to -3.7 Ry: above this gap
are the true valence states, below are the semi-core states that are treated by LO’s.
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In case.scf, the line labeled with :EPLxx (‘xx’ is the number of the atom) keeps track of
the average energy for every ` for atom ‘xx’: the arithmetic mean between the bottom and top
of the band. The line labeled with :EPHxx does the same for the valence states, but unlike for
the semi-core states the average energy is now the arithmetic mean between the bottom of the
band and the Fermi energy (because higher states are not occupied).

All this is done always, but has no effect unless with the run-command the switch -in1new N

is specified, with N a number. With this switch, after N iterations a new case.in1 is made based
on the information in the :EPLxx and :EPHxx from the previous iteration. The old case.in1

is copied to case.in1 orig. Using the automatic procedure in our case for Fe, would lead for
LAPW to

WFFIL (WFPRI, SUPWF)

7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT

.33385 5 0 global e-param with N other choices, napw

0 0.290 0.000 CONT 0

0 -5.775 0.000 CONT 0

1 0.438 0.000 CONT 0

1 -3.279 0.000 CONT 0

2 0.505 0.000 CONT 0

K-VECTORS FROM UNIT:4 -8.0 2.5 emin/emax window

which is close to the linearization values we determined ourselves. Be careful: the new case.in1

will not include the manually added LO at 1.5 Ry. If you really need this LO, you should after
having determined the linearization energies automatically, add the LO again:

WFFIL (WFPRI, SUPWF)

7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT

.33385 6 0 global e-param with N other choices, napw

0 0.290 0.000 CONT 0

0 -5.775 0.001 CONT 0

1 0.438 0.000 CONT 0

1 -3.279 0.001 CONT 0

2 0.505 0.000 CONT 0

2 1.500 0.000 CONT 0

K-VECTORS FROM UNIT:4 -8.0 2.5 emin/emax window

Then you run the calculation again, but now without the -in1new switch. Furthermore, using
-in1new will set 0.000 everywhere: no energy searching will be done anymore. This means
that this file becomes possibly invalid – and should be recreated with -in1new – if you change
the lattice constant. If you add highlying LO’s and run again without -in1new, don’t forget
to change the 0.000 to a small non-zero value for the deep-lying valence states (see above,
the lines with 0.001). These sharply peaked states could move a tiny bit when adding the
high-lying LO, and if you would not allow to research the linearization energy, the old value
could easily fall entirely outside the peak.
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6.2 Finding the best RmtKmax and k-mesh

We want to use a basis set that is large enough to be accurate, but only just large enough
in order not to waste computer time. The same holds for the density of k-mesh. Therefore,
you need to do some testing before you go to real calculations for your problem. Often it
is possible to find a small analog to your problem, where you can relatively quickly do the
tests. For instance, if you want to calculate properties of an impurity in a solid, you need a
large supercell. But the pure solid is described by a much smaller cell. You can determine
a good basis set and k-mesh size for this small cell, and extrapolate it to the supercell. It is
very important to determine a good basis set size and k-mesh before doing lengthy calculations
and/or interpreting physical results. If you don’t, you might be wasting lots of computer time
(if you use higher precision than you need) or you are producing nonsense instead of physics
(if you use less precision than you need).

These tests can be done either before or after determination of the linearization energies, as
RmtKmax and the k-mesh size are only very weakly dependent on the linearization energies10

As an example, we take hcp-Cd, with the following case.struct:

hcp-Cd

H 1

RELA

5.630252 5.630252 10.617619 90.000000 90.000000120.000000

ATOM= -1: X=0.33333333 Y=0.66666667 Z=0.25000000

MULT= 2 ISPLIT= 4

-1: X=0.66666667 Y=0.33333333 Z=0.75000000

Cd NPT= 781 R0=0.00001000 RMT= 2.4000 Z: 48.0

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

0 NUMBER OF SYMMETRY OPERATIONS

First we will use LAPW. Testing as described in the preceding sections, leads to this case.in1:

WFFIL (WFPRI, SUPWF)

7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT

.19836 5 0 global e-param with N other choices, napw

0 0.168 0.000 CONT 0

0 -7.144 0.000 CONT 0

1 0.274 0.000 CONT 0

1 -4.275 0.000 CONT 0

2 -0.191 0.000 CONT 0

K-VECTORS FROM UNIT:4 -9.0 2.0 emin/emax window

As a start, we take a low but safe value of RmtKmax = 7.0. Calculate the total energy (:ENE)
and a sensitive quantity as the main component of the electric-field gradient tensor (:EFG) as
a function of the size of the k-mesh, where this size is roughly doubled at each step. This gives
fig. 6.2, which shows that 912 k-points are enough for a total energy that is accurate up to about

10For the same RmtKmax and k-mesh, using the default linearization energies can lead to slightly different
values when compared to the optimized ones (the latter values being more accurate), but they will stabilize at
the same RmtKmax and k-mesh if you increase the latter.
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Figure 6.2: Total energy and electric-field gradient as a function of k-mesh size
for hcp-Cd (RmtKmax = 7.0).

1 mRy or better, and a field gradient accurate up to a few percent. Note that the behaviour of
the total energy as a function of the number of k-points is not smooth: the number of k-points
is not a variational parameter, and therefore it yields total energies that go in an erratic way
towards the exact value.

Having determined a good k-mesh, we now change RmtKmax from 6.0 to 9.5 in steps of 0.5
(fig. 6.2). The number of plane waves is a variational quantity, and therefore the total energy
drops monotonicly. After RmtKmax = 8.5 it starts going up, however. This is a signal that the
basis set became overcomplete: there are much more basis functions available than needed to
describe this situation. Consequently, there are many possibilities how to expand the density
into this basis set: the coefficients become linearly dependent on each other. This leads to
numerical inaccuracies, and the final result is less accurate, in spite of the larger basis set. For
this case, an optimal choice seems to be RmtKmax = 8.0

Now we examine the influence of using APW+lo for some orbitals (fig. 6.2). We use APW+lo
either for the valence d-orbitals only:

WFFIL (WFPRI, SUPWF)

7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT

.19836 5 0 global e-param with N other choices, napw

0 0.168 0.000 CONT 0

0 -7.144 0.000 CONT 0

1 0.274 0.000 CONT 0

1 -4.275 0.000 CONT 0

2 -0.191 0.000 CONT 1

K-VECTORS FROM UNIT:4 -9.0 2.0 emin/emax window

or for all valence orbitals:

WFFIL (WFPRI, SUPWF)
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Figure 6.3: Total energy and electric-field gradient as a function of RmtKmax

for hcp-Cd (912 k-points).

7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT

.19836 5 0 global e-param with N other choices, napw

0 0.168 0.000 CONT 1

0 -7.144 0.000 CONT 1

1 0.274 0.000 CONT 1

1 -4.275 0.000 CONT 1

2 -0.191 0.000 CONT 1

K-VECTORS FROM UNIT:4 -9.0 2.0 emin/emax window

From fig. 6.2, it is seen that in all three ways the same value is reached for the electric field
gradient at the largest basis set size. For LAPW, one comes close enough to this value for
RmtKmax ≥ 8.0. If APW+lo is used for the d-orbitals, RmtKmax ≥ 7.0 is sufficient. And if we
use APW+lo for all valence orbitals, even RmtKmax ≥ 6.0 is acceptable. For RmtKmax = 8.0
and LAPW, the basis set has a size of 181 (argue for yourself why there are 8 local orbitals
here):

RKM : MATRIX SIZE 181LOs: 8 RKM= 7.81 WEIGHT= 1.00 PGR:

For RmtKmax = 6.0 and APW+lo for all states, there are only 95 basis functions (argue for
yourself why there are 26 local orbitals):

RKM : MATRIX SIZE 95LOs: 26 RKM= 5.68 WEIGHT= 1.00 PGR:

This reduction of the basis set size by a factor of 1.9, means a reduction in computation time
by a factor of 1.93 ≈ 7, almost one order of magnitude.

The tests in this example have been done for the electric-field gradient (which is never bad:
it is a sensitive quantity, and if this one is accurate, other quantities will usually be accurate
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Figure 6.4: Electric-field gradient as a function of RmtKmax for hcp-Cd (912
k-points), using LAPW for all orbitals, APW+lo for the valence d-orbitals,
and APW+lo for the valence s-, p- and d-orbitals.

too). For your own problems, you should check the quantities that are of interest for you. It is
always wise to check not only one quantity, but a few of them. It could happen that a quantity
converges by accident.
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Appendix A

Fourier transforms, plane waves, the
reciprocal lattice and Bloch’s theorem

A.1 Fourier transforms

Most often, one’s first encounter with Fourier transforms is in the context of time dependent
functions. The Fourier transform F of a function f(t) is a function F (ω) in frequency domain,
and is defined as:

F (ω) = F{f } =
∫ ∞

−∞
f(t)e−iωtdt (A.1)

f(t) = F−1{F} =
−1

2π

∫ ∞

−∞
F (ω)eiωtdω (A.2)

If one would like to construct f(t) by adding different functions eiωt, then F (ω) tells what the
weight of each function is. For instance, for f(t) = cos(ω0t) it can be shown that:

F (ω) =
1

2
δ(ω0 + ω) +

1

2
δ(ω0 − ω) (A.3)

(see fig. A.1) Therefore, cos(ω0t) must be equal to a sum of two eiωt-functions, each with a
weight given above:

cos(ω0t) =
1

2
ei(−ω0)t +

1

2
eiω0t (A.4)

which indeed is true, considering the definition:

eiωt = cos(ωt) + i sin(ωt) (A.5)

In this example, there is a discrete set of ω-values where F (ω) is non-zero. In general, this is
true for any periodic function: its Fourier transform is nonzero at a discrete set of frequencies
(although there might be an infinite number of frequencies in the set). A periodic function can
therefore be written as a sum of functions eiωt. If f(t) is aperiodic, F (ω) is non-zero over a
continuous and often infinite range, and f(t) can therefore be written only as an integral over
eiωt.

41
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Figure A.1: Fourier transform of cos (ω0t).

A.2 Plane waves

The concept of Fourier transforms can be translated for use with functions f(~r) in real space.
The role of ω will be taken over by so-called reciprocal vectors ~g that have as dimension 1/length.
In the same way as the infinite amount of position vectors continuously fills real space, so the
infinite amount of reciprocal vectors continuously fills reciprocal space. Fourier and inverse
Fourier transforms between real and reciprocal space are now defined as:

F (~g) = F{f} =
∫

f(~r) e−i~g·~r d3~r (A.6)

f(~r) = F−1{F} =
−1

2π

∫
F (~g) ei~g·~r d3~g (A.7)

A particular kind of function in real space is a plane wave, defined as:

f(~r) = ei~g0·~r (A.8)

with ~g0 any vector in reciprocal space. Convince yourself that a plane wave is periodic in space
with wave vector ~g0 (= it takes the same value if you go along a distance 2π/|~g0| parallel with
~g0), and that for any plane perpendicular to ~g0 it has the same value everywhere in that plane.
The Fourier transform of a plane wave is non-zero at a single point ~g0 in reciprocal space only:

F (~g) =
∫

ei(~g0−~g)·~rd3~g (A.9)

= δ(~g0 − ~g) (A.10)

which is very logical, as we need only one function ei~g·~r at ~g = ~g0 with weight 1 to ‘build’ ei~g0·~r.
The shorter the period of the plane wave in real space, the further away the point indicated by
~g0 lies from the origin of reciprocal space.

Functions that are periodic in real space, will have a Fourier transform that is non-zero
only at discrete points in reciprocal space (possibly an infinite number of points). For aperiodic
functions in real space, the Fourier transform will be non-zero over a continuous volume of
reciprocal space.
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A.3 The reciprocal lattice

So far, we did not make any distinction between different points in real or reciprocal space1,
none of them were ‘special’. Now, we introduce an infinite and regular (Bravais) lattice of
special points in real space, which we call the real lattice or direct lattice. As an example, take
the following basis vectors:

~a = (5, 0, 0) |~a| = 5 (A.11)

~b =
(
5
√

2, 5
√

2, 0
)

|~b| = 10 (A.12)

~c = (0, 0, 1) |~c| = 1 (A.13)

A cut along the XY-plane of this lattice is shown in fig. A.2-a. Define now three basis vectors
to construct a lattice of special points in reciprocal space in the following way:

a∗ = 2π
~b× ~c

~a ·
(
~b× ~c

) a∗ =
2π

5/
√

2

(√
2

2
, −

√
2

2
, 0

)
2π

|a∗| =
5√
2
≈ 3.536

(A.14)

b∗ = 2π
~c× ~a

~b · (~c× ~a)
b∗ =

2π

10/
√

2
(0, 1, 0)

2π

|b∗| =
10√

2
≈ 7.071

(A.15)

c∗ = 2π
~a×~b

~c ·
(
~a×~b

) c∗ = 2π (0, 0, 1)
2π

|a∗| = 1

(A.16)

This definition depends on the details of the real lattice. The lattice of special points in
reciprocal space defined by these basis vectors is called the reciprocal lattice corresponding
to this particular real lattice. We will indicate these special points by ~K, reciprocal lattice
vectors. In Fig. A.2-a a cut through the XY-plane of our real and reciprocal lattices are shown
superimposed on each other2, Fig. A.2-b shows a detail of the reciprocal lattice close to the
origin. As for any point in reciprocal space, also the points of the reciprocal lattice correspond
to plane waves in real space. Fig. A.2-c shows wave fronts of the three waves corresponding to
~a∗, 3~a∗ and ~a∗ +~b∗. Apparently, the plane waves corresponding to the reciprocal lattice have
a special property: they are commensurate with the real lattice. This means: if you are on a
particular wave front and you make a displacement along any n~a + m~b + p~c, then you end up
on a wavefront with exactly the same value. An alternative definition of the reciprocal lattice
could therefore be: the collection of all points in reciprocal space that correspond to plane
waves that are commensurate with the real lattice.

1Be careful in the remainder of this section not to confuse the words space and lattice: they have clearly
distinct meanings!

2Note that such a plot depends on the length unit chosen: if a = 5 mm in real space, a∗ = (2π)/(5/
√

2) ≈ 1.78
mm−1 in reciprocal space. In Fig. A.2-a, this would be represented as 1.78 mm. But if a would be measured
in meter, a = 0.05 m would correspond to 177.7 m. This at first sight strange behaviour is due to the fact that
we want to display the reciprocal lattice with inverse length as dimension into our real world where we have to
draw lines with real lengths. Fig. A.2 is made with an arbitrary length unit in which ~a has length 5 and ~b has
length 10. Anyway, this affects only the appearance of the plot and not the physical results: whatever units are
used, the wavelengths (which have dimension of length) are found to be the same.
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Figure A.2: a) Lattice and reciprocal lattice. b) The first Brillouin zone. c)
Wave fronts of plane waves that are commensurate with the real lattice.
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As for any lattice, several equivalent primitive unit cells can be defined for the reciprocal
lattice. One such choice is a cell that contains all points in reciprocal space that are closer to
the origin then to any other point of the reciprocal lattice (see Fig. A.2-b). This particular
choice of primitive unit cell is called the first Brillouin zone. Analogously, the second Brillouin
zone is defined as containing all points that have the origin of the reciprocal lattice as their
second nearest neighbour. Any point in reciprocal space can uniquely be assigned to some nth

Brillouin zone. By definition of the concept ‘unit cell’, any point (in the nth Brillouin zone)
can be connected to a point in the first Brillouin zone by a vector of the reciprocal lattice.

A.4 Bloch’s theorem

As is explained in B, the (discrete) set of eigenfunctions of a quantummechanical hamiltonian
can always be labeled by quantum numbers. Bloch’s theorem tells how this can be done for a
hamiltonian that has a lattice periodicity. The theorem says: Any eigenfunction ψ(~r) can be
written as a product of a function u~g(~r) that has the periodicity of the lattice, and a plane wave
ei~g·~r with ~g any3 vector in reciprocal space.

ψ(~r) = u~g(~r)e
i~g·~r (A.17)

As there are an infinite number of vectors in reciprocal space, there are an infinite number of
eigenstates of such a hamiltonian. The reciprocal vectors ~g serve as labels (quantum numbers)
of the eigenstates, and we could therefore rename ψ(~r) into ψ~g(~r).

Usually this is not done exactly in this way however. Every ~g can be written as the sum of
a vector in the first Brillouin zone (we call this ~k 4) and a reciprocal lattice vector ~K:

~g = ~k + ~K (A.18)

Bloch’s theorem can now be rewritten as follows:

ψ~g(~r) =
{
u~g(~r)e

i ~K·~r} ei~k·~r (A.19)

Because ei ~K·~r is commensurate with the lattice, the function between brackets still has the
periodicity of the lattice. We could rename it into un

~k
(~r), where n indicates the number of the

Brillouin zone where ~g was in. Indeed, n and ~k contain the same information as ~g, and can
therefore be used as an alternative way of labeling. For n = 1, ~k and ~g are identical. For ~g in
the second Brillouin zone, we reuse the same set of ~k, but n is increased to 2, etc. For each ~k,
an infinite number of n is possible. The parameter n is called the band index.

3Strictly spoken only for an infinitely large lattice every ~g is allowed. If a finite crystal and periodic boundary
conditions are used, the allowed ~g form a dense mesh in reciprocal space: in the first Brillouin zone, there are as
many allowed ~g as there are unit cells contained in the finite (real) lattice. For a crystal of macroscopic size, this
is a huge number. For any ~g there will be an allowed ~g very nearby, and therefore we can for practical purposes
we assume that all ~g are allowed. The exact property that distinguishes the allowed ~g from the not-allowed
ones, is that they correspond to plane waves that are commensurate with the boundaries of the finite crystal.

4Pay attention to the consistent names that are use: ~g for any reciprocal vector, ~K for a reciprocal lattice
vector and ~k for a vector in the first Brillouin zone. Other texts may use other notations.
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Bloch’s theorem can now be restated in its most frequently used form: Any eigenfunction
ψn

~k
(~r) can be written as a product of a function un

~k
(~r) that has the periodicity of the lattice, and

a plane wave ei~k·~r with ~k any vector in the first Brillouin zone:

ψn
~k
(~r) = un

~k
(~r)ei~k·~r (A.20)

Actually we have now split off a known part (ei~k·~r) from the eigenstate, such that only the
unknown remainder un

~k
(~r) has to be determined. An important advantage is that this part is

now known to have the periodicity of the lattice (which is not true for ψn
~k
(~r) itself). If a plane

wave basis set is used, it can therefore be written as a sum (no integral needed !) over plane
waves that have this same periodicity, and these precisely are the plane waves corresponding
to reciprocal lattice vectors:

un
~k
(~r) =

∑

~K

cn,~k
~K

ei ~K·~r (A.21)

The expansion of ψn
~k
(~r) in the same basis is then

ψn
~k
(~r) =

∑

~K

cn,~k
~K

ei(~k+ ~K)·~r (A.22)

and what have to be searched are the coefficients cn,~k
~K

.



Appendix B

Quantum numbers and the Density Of
States

B.1 Familiar examples

In quantum mechanics, every physical situation that one wants to study is completely defined
by its Hamiltonian Ĥ. Every stationary solution of such a problem is described by a state ψκ

that is an eigenstate of that Hamiltonian. The energy of that solution is the corresponding
eigenvalue Eκ:

Ĥψκ = Eκψκ (B.1)

This is called the (time-independent) Schrödinger equation. In a physical situation, there are
always boundary conditions. This limits the possible eigenvalues, and only a discrete but infi-
nite set Eκ remains. The symbols κ stands for one or more quantum numbers that are used to
label the different eigenfunctions and eigenvalues that satisfy the boundary conditions.

Some well-known examples:

• The one-dimensional harmonic quantum oscillator
A (light) particle with mass M moves in a one-dimensional harmonic potential V (x) =
Cx2/2. The Schrödinger equation is:

(
− h̄2

2M

d2

dx2
+

Cx2

2

)

︸ ︷︷ ︸
Ĥ

ψn(x) = Enψn(x) (B.2)

The boundary condition is that the particle is bound: its probability to appear at x →∞
is zero. The discrete set of eigenvalues En and eigenfunctions ψn(x) can be labeled by a
single quantum number n (n = 0, 1, 2, . . .) and are

En = (n +
1

2
) hν (B.3)

ψn(x) =

√
1√

π 2n n!
e− ξ2/2 Hn(ξ) (B.4)
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Figure B.1: Left: Eigenvalues as a function of the label (quantum number) n for
the harmonic oscillator. Right: DOS as a function of energy for the harmonic
oscillator (the picture is rotated over 90◦ in order to make comparison with the
energy axis of the left picture easy).

The vibration frequency ν is fully determined by C and M . The variable ξ =
√

α x, with
α fully determined by C and M . Hn(ξ) is the Hermite polynomial of order n.

Fig. B.1 shows the eigenvalues as a function of the quantum number n, which is called the
eigenvalue spectrum. In the same picture, the following function of the energy is shown:

g(E) =
∑
n

δ (E − En) (B.5)

Here δ is the Dirac delta function. The function g(E) is called the Density Of States
(DOS). Whenever E equals an eigenvalue, the DOS is non-zero. If two eigenvalues would
be degenerate (which does not happen in this example), the DOS would be twice as high
for that energy. If in some energy region many eigenvalues would exist, the DOS would
be non-zero at many places in that region. Obviously, the eigenvalue spectrum contains
the full physical information about the problem. The DOS contains less information than
the eigenvalue spectrum1, but carries still some of the characteristics of the problem.
The DOS will serve as an easy ‘fingerprint’ of the problem in cases where the eigenvalue
spectrum is difficult to visualize (see soon).

• A single electron orbiting a given nucleus with infinite mass
This case is treated in Appendix D. The Hamiltonian is given in equations D.1 and D.2.
Boundary conditions for the 3 separate differential equations are that the solutions are
single-valued (for Φ), everywhere finite (for Θ) and vanishing for r →∞ (for u). Eigen-
functions and eigenvalues are labeled by the quantum numbers n, ` and m.

Fig. B.2 shows the eigenvalue spectrum, that is clearly different from the case of the
harmonic oscillator. For a given n, there are n values of ` ranging from 0 to n − 1 that
are degenerate. Each of these ` itself is 2` + 1-fold degenerate due to m. That makes for
each n a

∑n−1
`=0 (2` + 1)-fold degeneracy, which is reflected in the increasing value of the

DOS. The energies where the DOS is non-zero, are also not evenly spaced any more.

1Try to construct an imaginary eigenvalue spectrum that would yield exactly the same DOS as in fig. B.1.
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Figure B.2: Left: Eigenvalues as a function of the label (quantum number) n
for a free one-electron atom (states with the same n but a different ` and m are
degenerate). Right: DOS as a function of energy for a free one-electron atom
(the picture is rotated over 90◦ in order to make comparison with the energy
axis of the left picture easy).

• A free particle in a one-dimensional box with length L
The Schrödinger equation is:

(
− h̄2

2M

d2

dx2

)

︸ ︷︷ ︸
Ĥ

ψp(x) = Epψp(x) (B.6)

with M the mass of the particle. The boundary condition is that the parcticle cannot
leave the box. Eigenvalues and eigenstates are labeled by a quantum number p that can
take the values

p =
2πn

L
(B.7)

with n any integer (negative, zero or positive). Eigenvalues and eigenstates are:

Ep =
h̄2p2

2M
(B.8)

ψp(x) =
1√
L

eipx (B.9)

The eigenvalue spectrum and the DOS are shown in fig. B.3. Apart from ψp=0, all states
are doubly degenerate. When going to higher energies, the intervals between eigenvalues grow
larger.

B.2 Crystalline solids

A general property of crystalline solids is that the potential due to the nuclei is periodic:

V (~r + ~R) = V (~r) (B.10)
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Figure B.3: Left: Eigenvalues as a function of the label (quantum number) p
for a particle in a one-dimensional box. Right: DOS as a function of energy
for a particle in one-dimensional box (the picture is rotated over 90◦ in order
to make comparison with the energy axis of the left picture easy).

with ~R any vector of the Bravais lattice2. It can be shown that for the kinetic part of the
Hamiltonian, this condition is always fulfilled. Therefore, if the potential is periodic, the total
hamiltonian is. We look now at the case where periodic boundary conditions are used for the
macroscopic piece of crystal: an infinite solid is built by filling space periodically with copies
of the crystal (fig. B.4). Under these conditions, eigenvalues and eigenfunctions of a periodic

Hamiltonian can be labeled with the quantum ‘numbers’ n and ~k. n = 1, 2, 3, . . . and ~k is
any vector in the first Brillouin zone that corresponds to a plane wave that is commensurate
with the macroscopic crystal (fig. B.4). For every valid ~k, all values of n occur. The number of

valid ~k-vectors is equal to the number of unit cells in the macroscopic crystal. For real solids,
this number is huge (order of magnitude 1023). Therefore, the ~k-vectors are very close to each
other, and we can assume that they continuously fill the first Brillouin zone. Note the difference
between the ~K-vectors from section A.3 that build the reciprocal lattice: they correspond to
plane waves that are commensurate with the unit cell of the crystal. The special ~k-vectors that
are selected inside the first Brillouin zone here, are commensurate with the entire macroscopic
piece of crystal. Eigenfunctions are written as ψn

~k
, eigenvalues as εn

~k
(or En

~k
).

When we want to visualize the spectrum of eigenvalues, a problem is met: the eigenvalues
are labeled by 4 independent numbers (n, kx, ky and kz), such that 5 dimensions would be
needed to make a plot as in the preceding examples. Obviously, this cannot be done. An
alternative procedure is to select a path through the first Brillouin zone, and plot for every
n the energies εn

~k
of the ~k that happen to fall onto that path (see fig. B.5 for an example).

The way the path is selected, is largely conventional. Straight intervals of the path are given
conventional capital letters (often Greek) as names, and special points in the first Brillouin
zone are given conventional capital letters (often Latin). Figures as fig. B.5 (in WIEN2K they
are called ‘spaghetti plots’) represent most but not all essential information of the eigenvalue
spectrum.

As in the previous cases, it is possible to plot the DOS here. The DOS is a function of
the energy only, and hence not suffers from too high dimensions. Due to the presence of the

2The Bravais lattice contains all essential information on the underlying symmetry of the crystal lattice.
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Figure B.4: Periodic boundary conditions and wave fronts of plane waves that
are commensurate with the entire crystal.

(almost) continuous extra quantum number ~k, the definition of the DOS has to be extended:

g(E) =
2

VBZ

∑
n

∫
δ(ε− εn

~k
) d~k (B.11)

Here VBZ is the volume of the first Brillouin zone, and the integral is over the first Brillouin
zone. The factor 2 is included to account explicitly for (degenerate) spin. An example of a

DOS – which is a continuous function now due to ~k – is shown in fig. B.5. When there are flat
regions in the spaghetti plot, many ~k have the same energy. This will show up as a peak in the
DOS.
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Figure B.5: Bottom: The first Brillouin zone of a bcc lattice, with 4 high symmetry
points indicated: Γ, H, N and P. These points are connected by lines, labeled ∆,
G, Σ and Λ. These 4 lines define a path through the Brillouin zone. Top left: the
eigenvalues of all the k-vectors along the path are plotted, for some bcc compound
(bcc-Fe, spin up). This so-called band structure plot contains less information than

the full eigenvalues-versus-~k plot, but the latter would require 5 dimensions. The
fact that for every ~k multiple eigenvalues are possible, is due to different n. Top
right: the DOS for the same material, plotted in such a way that the energy scale
matches with the energy scale of the band structure plot. The DOS too contains
less information than the full eigenvalues-versus-~k plot, but compared to the band
structure other information is omitted or included: the DOS is an integral over
the full Brillouin zone (and not limited to a onedimensional path only), but on the

other hand does not give information for a specific ~k. Peaks in the DOS mean that
many ~k-vectors have the same eigenvalue. If the path goes through the region of the
Brillouin zone that is responsible for this, we see relatively flat (horizontal) lines in
the left picture, at the same energies where a peak is in the DOS. Four peaks are
labeled 1-4 in the DOS, and are related to features of the band structure plot.



Appendix C

The eigenvalue problem

C.1 Eigenvalues and eigenvectors

Consider a vector space (IRn, take n = 2 for simplicity) with a basis set (~e1, ~e2) that need not
to be orthogonal. With respect to this basis, every vector ~x can be uniquely characterized by
two numbers (x1, x2). With Ĥ, we denote an operator that can operate on ~x, resulting in a
new vector ~y = (y1, y2):

Ĥ~x = ~y (C.1)

Given Ĥ, we want to find all vectors ~x that under Ĥ transform into a vector that is parallel
with itself:

Ĥ~x = λ~x (C.2)

We rewrite this condition using the basis vectors, and will search for the (x1, x2) that satisfy
it:

Ĥ (x1~e1 + x2~e2) = λ (x1~e1 + x2~e2) (C.3)

Left-multiply this equation with ~e1:

x1 ~e1 ·
(
Ĥ~e1

)
+ x2 ~e1 ·

(
Ĥ~e2

)
= λ (x1 ~e1 · ~e1 + x2 ~e1 · ~e2) (C.4)

Do the same with ~e2:

x1 ~e2 ·
(
Ĥ~e1

)
+ x2 ~e2 ·

(
Ĥ~e2

)
= λ (x1 ~e2 · ~e1 + x2 ~e2 · ~e2) (C.5)

Equations C.4 and C.5 can be summarized in matrix notation as

 ~e1 ·

(
Ĥ~e1

)
~e1 ·

(
Ĥ~e2

)

~e2 ·
(
Ĥ~e1

)
~e2 ·

(
Ĥ~e2

)



[
x1

x2

]
− λ

[
~e1 · ~e1 ~e1 · ~e2

~e2 · ~e1 ~e2 · ~e2

] [
x1

x2

]
=

[
0
0

]
(C.6)

The ijth element (call it Hij ) of the first matrix is a number, as it is the result of a dot product.

This matrix is completely determined if the action of Ĥ on the basis vectors is known1. The

1It is straightforward to show that with this matrix Ĥ~x = ~y can be expressed as
[

H11 H12

H21 H22

] [
x1

x2

]
=

[
y1

y2

]
(C.7)

If the Hij are known, the effect of Ĥ on any vector ~x can be found by a simple matrix multiplication.
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elements of the second matrix (call them Sij ) are determined by the basis only. This matrix is
called the overlap matrix. With this notation, our 2 equations to find suitable (x1, x2) become:

[
H11 − λS11 H12 − λS12

H21 − λS21 H22 − λS22

] [
x1

x2

]
=

[
0
0

]
(C.8)

The left matrix is fully known, apart from λ that is a parameter. For every value of λ, equa-
tion C.8 can be solved for x1 and x2. For most values of λ, the determinant of the matrix will
be different from zero. Equation C.8 will have then one unique solution, which is obviously
(0, 0). This vector is parallel with the original ~x, but in a trivial way. Other, more interesting
solutions can occur only for those values of λ that give a vanishing determinant:

∣∣∣∣∣
H11 − λS11 H12 − λS12

H21 − λS21 H22 − λS22

∣∣∣∣∣ = 0 (C.9)

The above equation is called the secular equation of Ĥ. It is a polynomial equation in λ,
with as highest power the dimension of the space n (2 in this case). The roots2 of the secular
equation are called the eigenvalues of Ĥ. If λ = λ1 is an eigenvalue, [H − λ1S] [x] = [0] has an
infinite number of solutions: indeed, if (x1 = a, x2 = b) is a solution, (βa, βb) is one too, for β
any real number. This conforms with our initial requirement: if Ĥ transforms ~x into a vector
that is parallel with ~x, it will do the same with any vector β~x. These vectors are called the
eigenvectors of Ĥ, belonging to the eigenvalue λ1. Usually a unit vector among them is chosen
to represent this set of vectors. Eigenvectors belonging to different eigenvalues, can be shown
to be perpendicular3. Therefore, unit vectors belonging to n different eigenvalues can be taken
as an orthonormal basis

(
~eλ1

1 , ~eλ2
2

)
for the vector space.

What will be the matrix representation of the operator Ĥ, written in this new basis? Ac-
cording to equation C.6, the matrix elements are:

Hij = ~eλi
i ·

(
Ĥ~e

λj

j

)
(C.10)

= ~eλi
i ·

(
λj~e

λj

j

)
(C.11)

= λjδij (C.12)

This is a diagonal matrix with the former eigenvalues on the diagonal:

[H] =

[
λ1 0
0 λ2

]
(C.13)

We could now try to find the eigenvalues and eigenvectors of this operator in the new basis,
using the same procedure as described above. Obviously we will find the same λ1 and λ2

as before, with as eigenvectors (1, 0) and (0, 1) (i.e. the old eigenvectors which are now the
basis vectors). This illustrates that eigenvalues and eigenvectors are intrinsic properties of the
operator, and do not depend on the choice of the basis.

If the basis we originally started with was already orthonormal, then the overlap matrix
will be a unit matrix. This simplifies equation C.6.

2There will be at most n roots. In all cases that will be of interest for us, there will be exactly n roots.
3At least if the matrix representing the operator is hermitian, which is the case for ‘well-behaved’ operators.
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It could happen that 2 of the roots of the secular equation coincide. In that case, that
eigenvalue leads to a plane instead of a line of eigenvectors. There is freedom then to choose
two mutually perpendicular basis vectors in that plane, but still they are perpendicular to
eigenvectors of the other – different – eigenvalues.

This idea can be extended to vector spaces of infinite dimension (e.g. function spaces, in
which single particle wave functions are described).

C.2 Basis transformations

Consider an operator Â with matrix representation A 4, in a vector space IRn with a normalized
but not necessarily orthogonal basis (~eα

1 , . . . , ~eα
n ). This operator transforms every vector into

a new vector. Also the basis vectors are transformed, and in this way you can understand that
the jth column of A contains the coefficients that express the transformed jth basis vector in
the original basis:




· · · a1j · · ·
· · · ... · · ·
· · · ajj · · ·
· · · ... · · ·
· · · anj · · ·




n×n




eα
1j = 0

...
eα
jj = 1

...
eα
nj = 0




n×1

=




a1j
...

ajj
...

anj




n×1

(C.14)

This provides a practical recipe to find the matrix representation of an operator about which
we want that it transforms the basis vectors ~eα

j in a new set ~eβ
j : express each ~eβ

j in the old
basis ~eα

j , and these expansion coefficients form the columns of A. Note that in this way a non-
orthogonal basis can be transformed into an orthogonal basis. If both bases are orthonormal,
than the matrix A has special properties (it is a unitary matrix).

Conversely, the jth column of the inverse matrix A−1 contains the coefficients that express
the vector ~eα

j of the old basis in the new basis of the ~eβ
j . This is illustrated in fig. C.1 for an

operator

A =

[ √
2

2
-
√

2
2√

2
2

√
2

2

]
A−1 =

[ √
2

2

√
2

2

-
√

2
2

√
2

2

]
(C.15)

that rotates every vector of IR2 counterclockwise over 45◦. The old basis (~eα
1 , ~eα

2 ) is trans-

formed in the new basis
(
~eβ

1 , ~eβ
2

)
. The coordinates of these 4 vectors in both bases are:

old new

~eα
1 (1, 0)

(√
2

2
, −

√
2

2

)

~eα
2 (0, 1)

(√
2

2
,
√

2
2

)

~eβ
1

(√
2

2
,
√

2
2

)
(1, 0)

~eβ
2

(
−

√
2

2
,
√

2
2

)
(0, 1)

4Â is a general operator, not necessarily identical to the Ĥ we were discussing before. But everything that
is said about Â, applies for Ĥ too.
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X

Y
X’

Y’

(1,0)

(0,1)

Figure C.1: An operator Â rotates every vector counterclockwise over 45◦. The
new axis system X’Y’ formed by the rotated original basis vectors is shown.

Check with this table and with fig. C.1 that the following expression

AX = Y (C.16)

(X and Y are (n× 1)-matrices) can be interpreted in these two different ways:

• First interpretation: X contains the coefficients of any vector expressed in the old basis.
Then Y will contain the coefficients of the transformation of X under Â, expressed in the
old basis.

• Second interpretation: X contains the coefficients of any vector expressed in the new
basis. Then Y will contain the coefficients of this same vector, expressed in the old basis.

Similarly, this expression

A−1X = Y (C.17)

can be interpreted in two ways too:

• First interpretation: X contains the coefficients of the transformation under Â of any
vector, expressed in the old basis. Then Y will contain the coefficients of this original
vector (=before transformation) expressed in the old basis.

• Second interpretation: X contains the coefficients of any vector expressed in the old basis.
Then Y will contain the coefficients of this same vector, expressed in the new basis.

C.3 A practical procedure to find eigenvalues and eigen-

vectors

Given a vector space IRn with a normalized but not necessarily orthogonal basis, we want to
find the n eigenvalues and the n eigenvectors of a given operator Ĥ. The matrix elements Hij
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and Sij of the matrix representation H of the operator and of the overlap matrix S of the basis
set, can be obtained as described before. Both are n×n matrices. What we want to determine
are the coefficients cij that express in the given basis the jth normalized eigenvector. In total,
n×n coefficients cij are needed to specify all eigenvectors, and they can be arranged in an n×n
matrix C5. Equation C.8 can then be extended to:

HC = SCE (C.18)

where E is an n × n diagonal matrix that contains as its jth diagonal element the eigenvalue
corresponding to the jth eigenvector6. In equation C.18, the n2 coefficients cij are unknown,
as are the n eigenvalues Ejj . Equation C.18 represents n2 independent equations, and n2 + n
unknowns have to be determined. The remaining n equations come from the requirement that
in each class of eigenvectors, we search a normalized one7:

[c1j c2j . . . cnj ]1×n [Sij ]n×n




c1j

c2j
...

cnj




n×1

= 1 (C.19)

Equations C.18 and C.19 define the problem to be solved.

Now, we left-multiply equation C.18 by an n×n matrix A−1. At two other places, we insert
a multiplication by the unit matrix II = AA−1:

A−1HA︸ ︷︷ ︸
H0

A−1C︸ ︷︷ ︸
C0

= A−1SA︸ ︷︷ ︸
S0

A−1C︸ ︷︷ ︸
C0

E (C.20)

It can be proven that for ‘well-behaved’ operators Ĥ, always a matrix A can be found such
that H0 = A−1HA is a diagonal matrix. We know that in such a case the elements on the
diagonal must be the eigenvalues of Ĥ. Consequently, H0 = E. But if H0 is diagonal, we know
that it must be expressed in a basis that consists of its eigenvectors. Therefore, the operator Â
must transform the original basis into the new basis of eigenvectors. Because C contained the
(unknown) coefficients of the eigenvectors in the old basis, C0 = A−1C contains the coefficients
of the eigenvectors in the basis of eigenvectors: C0 must be diagonal. (We cannot say that
C0 should be the unit matrix: according to equation C.18 it should contain coefficients of
eigenvectors, not of normalized eigenvectors.) Equation C.20 is identical to equation C.18, but
written in the new basis of eigenvectors:

H0C0 = S0C0E (C.21)

with H0 = E and C0 diagonal. Because the eigenvectors are mutually orthogonal, this new
basis is orthonormal and hence S0 is a unit matrix. The final expression

EC0 = C0E (C.22)

5Note that the coefficients that describe the jth normalized eigenvector form the jth column of C.
6Check for n = 2 that equation C.18 is indeed equivalent to twice equation C.8, once for both eigenval-

ues/eigenvectors.
7In an orthonormal basis (S is a unit matrix), this reduces to the more familiar formula for the square of

the length of a vector.
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is true, because multiplication among diagonal matrices is commutative.
We conclude that if we can find the matrix A that diagonalizes H, the eigenvalues are read

from its diagonal, and the eigenvectors can be calculated from

C = AC0 (C.23)

where the n undetermined values on the diagonal of C0 are fixed by the still unused normaliza-
tion requirements C.19. Diagonalizing the Hamiltonian matrix is the key to solve the eigenvalue
problem. A lot of standard numerical procedures are available to perform a diagonalization.
An important common feature is that the time it takes to execute them on a computer scales
with n3.



Appendix D

Solutions of the radial part of the
Schrödinger equation

Many text books on quantum mechanics explicitly solve the Schrödinger equation for a single
electron with charge −e and mass me in the Coulomb potential of a nucleus with charge Ze
and infinite mass1. In spherical coordinates ~r = (r, θ, φ), the Schrödinger equation is:

− h̄2

2me

∇2 ψ(r, θ, φ) + V (r) = E ψ(r, θ, φ) (D.1)

with

V (r) = − Z e2

4πε0 r
(D.2)

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin2 θ

∂2

∂φ2
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
(D.3)

This differential equation can be shown to be separable in 3 independent differential equations,
each of them involving only r, θ or φ respectively. General solutions of equation D.1 will
therefore be of the form

ψ(r, θ, φ) = u(r) Θ(θ) Φ(φ) (D.4)

The three differential equations of which Φ(φ), Θ(θ) and u(r) are solutions, are:

d2Φ

dφ2
= −m2Φ (D.5)

− 1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

m2Θ

sin2 θ
= `(` + 1) Θ (D.6)

1

r2

d

dr

(
r2 du

dr

)
+

2me

h̄2 (E − V (r)) u = `(` + 1)
u

r2
(D.7)

Here ` and m are dimensionless parameters. In order to have well-behaved solutions, it can be
shown that ` = 0, 1, 2, 3, . . . and m = −`, −` + 1, . . . , ` − 1, `. The product of Θ(θ) and
Φ(φ) is called a spherical harmonic Y `

m(θ, φ):

Y `
m(θ, φ) = Θ(θ) Φ(φ) (D.8)

1An infinite mass avoids the rotation of nucleus and electron around their common center of mass.

59



60

Spherical harmonics can be found tabulated for many (`,m) at various places. The full solution
of equation D.1 can now be written as

ψ(r, θ, φ) = u`(r) Y `
m(θ, φ) (D.9)

with u`(r) a solution of equation D.7 with the proper value of `. Equation D.7 is the radial
Schrödinger equation.

What will be the solutions of equation D.7? Using these transformations of variables:

ρ = 2βr (D.10)

β2 = − 2meE

h̄2 (D.11)

γ =
meZe2

h̄2β
(D.12)

it can be shown that the solutions have the form

u`(r) = e− ρ/2 ρ` Gγ(ρ) (D.13)

where Gγ(ρ) is defined by the above relation. For the case of a free atom which we are con-
sidering here, the boundary condition for the radial equation is that u`(r) → 0 as r → ∞ (or
equivalently, as ρ → ∞). This can be shown to be possible only if γ = n, with n any of the
integers

n = ` + 1, ` + 2, ` + 3, . . . (D.14)

For these specific values of γ, the Gγ(ρ) – now written Gn(ρ) – are called the associated Laguerre
functions. The radial solutions u(r) carry a double index n` now (un`(r)), and the solutions of
the entire Schrödinger equation D.1 are labeled by n, ` and m:

ψn`m(r, θ, φ) = un`(r) Y `
m(θ, φ) (D.15)

The corresponding discrete set of energies (eigenvalues) is given by

En`m = En = − meZ
2e4

2h̄2n2
n = 1, 2, 3, 4, . . . (D.16)

which is degenerate in ` and m.

In the APW, LAPW+LO and APW+lo methods, we will use radial functions u`(r) that are
solutions of equation D.7. But we will need these functions only inside the muffin tin spheres.
What their behaviour for r →∞ is, is not important for us: we will never use these functions in
that region. The boundary condition that u`(r) should vanish at infinity therefore disappears.
Hence, the requirement that γ must be integer (leading to a discrete set of energies) disappears
too. If no boundary condition is used, solutions u`(r) can be found for every energy E. Note
that the subscript n is dropped now, as it has no meaning without a boundary condition.



Appendix E

The homogeneous electron gas

The homogeneous electron gas, uniform electron gas or jellium model is an imaginary solid
where all nuclear charge is homogeneously smeared out over space. This material is completely
isotropic, and identical on every length scale. Therefore the electron density is constant:

ρ(~r) ≡ ρ ≡ N

V
(E.1)

with N the number of electrons in the material, and V its volume. The parameter ρ is the only
thing we need to specify a particular homogeneous electron gas completely.

If the electrons do not interact, we are in the case of the free electron gas, which can be solved
analytically in a straightforward way. The problem is much more difficult for an interacting
electron gas. Here numerical calculations for the total energy are possible by quantum Monte
Carlo. Subtracting the non-interacting kinetic energy and the Hartree energy gives a numerical
result for the exchange-correlation energy εxc. If this is done for several densities ρ, the function
εxc(ρ) is obtained. Note that εxc is a function of ρ, not a functional.
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Appendix F

Functionals

F.1 Definition and Examples

To say that F is a functional of the function f(τ) means that F is a number whose value
depends on the form of the function f(τ). In other words: for every function f (defined on the
same domain, given by τ) the functional F [f ] returns a unique number:

F : F 7→ IR : f 7→ F [f ] (F.1)

(F is a space of functions) A functional is therefore a ‘function of functions’. Some examples
of functionals are:

• F [f ] =
∫ +∞
−∞ f(τ) e−τ2

dτ

Clearly, if f is changed the value of the integral and therefore F [f ] is changed. Note that
F does not depend on the coordinates τ of f , only the form of f matters.

• F [f ] = f(0)

This very simple functional depends only on the value of f at τ = 0. Another f gives
another value for F [f ].

• The integral of a function is a functional. Another function gives another integral, and
hence another value for the functional.

• The total energy of a quantum system is a functional of the density, as stated by the first
theorem of Hohenberg and Kohn. The density is a function defined on IR 3.

F.2 Functional derivatives

The generalization of the derivative df(x)
dx

of a function f(x), is the functional derivative δF [ρ]
δρ

of

the functional F [ρ]. As an example, we calculate here the functional derivative of the nucleus-
electron part of the total-energy functional used in Chapter 1. The same method can be applied
to functionals of other form too.

Consider a functional

En−e
Vext

[ρ] =
∫ b

a
ρ(x)Vext(x) dx (F.2)
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where Vext(x) is a given function. The integral runs over the 1-dimensional volume [a, b] (it is
straightforward to extend the following reasoning to functions ρ(~r) and Vext(~r) and integrals
over 3-dimensional volumes, as is needed in Chapter 1).

The variation of En−e
Vext

[ρ] with respect to its argument ρ(x) is given by

δEn−e
Vext

[ρ] = En−e
Vext

[ρ + δρ]− En−e
Vext

[ρ] (F.3)

=

(∫ b

a
ρ(x) Vext(x) dx +

∫ b

a
δρ(x) Vext(x) dx

)
−

∫ b

a
ρ(x) Vext(x) dx (F.4)

=
∫ b

a
δρ(x) Vext(x) dx (F.5)

In standard calculus, the differential df of a function f(~x) defined on an n-dimensional domain,
is given by the chain rule:

df =
n∑

i =1

∂f

∂xi

dxi (F.6)

In the calculus of functionals, the dimension of the domain (F) is infinite. If one divides the
interval [a, b] into small enough sub-intervals defined by the set {x1 = a, x2, . . . , xn−1, xp = b}
so that the variation δρ(x) is approximately constant in each interval, then equation F.5 is
given approximately by

δEn−e
Vext

[ρ] ≈
p∑

i = 1

Vext(xi) [δρ(xi) ∆x] (F.7)

In the limit of p → ∞, equation F.5 is recovered. Comparing equations F.5 and F.6 one can
identify

dxi → δρ(x) dx (F.8)

∂f

∂xi

→ Vext(x) =
δEn−e

Vext
[ρ]

δρ
(F.9)

Generalization to functionals

En−e
Vext

[ρ] =
∫

vol
ρ(~r) Vext(~r) d~r (F.10)

defined with functions ρ(~r) : IR3 7→ IR leads to the following formula for the functional deriva-
tive:

δEn−e
Vext

[ρ]

δρ
= Vext(~r) (F.11)
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