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I. GENERAL SCHEME

Hyperfine field on a nuclei of an atom may be written as

Bhf = Bc + Bdip + Borb + Blat, (1)

where Bc is the Fermi contact term, Bdip is the dipolar field from the on-site spin density, Borb is the field associated
with the on-site orbital moment. Blat is classical dipolar field from all other atoms in the system that carry the
magnetic moment and its calculation is described in detail in [1]. Calculation of Bc is performed in standard spin-
polarized WIEN2k calculation. Below we compare the calculation of Bc, Bdip and Borb as described in the book of
Abragam and Bleaney [2] (denoted in what follows as A) and in the paper by Blügel et al. [3] (B).

A. Bhf of Abragam and Bleaney

The interaction of nuclear spin ~I located at ~r = 0 with electron spin ~s and orbital moment ~l is given by eq. (A
17.30):

Hn = 2µB γn ~ ~I

[

~l

r3
−

~s

r3
+ 3

~r (~s~r)

r5
+

8

3
π ~s δ(~r)

]

. (2)

The nuclear magnetic moment ~µI is (A, 1.18-1.19)

~µI = γn ~ ~I. (3)

First term in (2) corresponds to interaction with the orbital moment, second and third term correspond to iteraction
with the electron spin and the last term is the contact interaction.

Energy of the nuclear magnetic moment in the magnetic field ~Bext is (A, 1.27)

Wext = −~µI
~Bext. (4)

By comparison of (2) and (4) we get for the orbital, spin dipolar and contact hyperfine fields the expressions:

~Borb = −2µB

~l

r3
, (5)

~Bdip = −2µB

[

3
~r (~s~r)

r5
−

~s

r3

]

, (6)

and

~Bc = −2µB

8

3
π ~s δ(~r) (7)

Bc is therefore opposite to the spin density at the nucleus.
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B. Bhf of Blügel et al.

The energy of the interaction of nuclear spin with the orbital moment ~l of an electron localized on atom in question

(contrary to A ~l is in units of ~) is (B, eq.24)

Eorb = −
e

mc
~µI 〈Φ|

S(r)

r3
~l |Φ〉 (8)

where Φ is the large component of the relativistic wave function, m is the electron mass, S(r) is reciprocal of the
relativistic mass enhancement (B, eq.21):

S(r) =

[

1 +
ǫ − V (r)

2mc2

]−1

. (9)

The energy of dipolar interaction of nuclear spin with the electron spin magnetic moment ~µ is (B, eq.26)

Edip = 〈Φ|
S(r)

r3
[~µ ~µI − 3(~µ ~̂r )(~µI

~̂r )]|Φ〉; ~̂r = ~r/r. (10)

We now use that µB = e~/2mc and ~µ = 2µB~s, ~s being the electron spin. Eqs. (11, 12) then reduce to:

Eorb = −2~µI µB〈Φ|
S(r)

r3
~l |Φ〉 (11)

Edip = 2µB ~µI〈Φ|
S(r)

r3

[

~s − 3(~s ~̂r) ~̂r
]

|Φ〉. (12)

The contact interaction is (B 32)

Ec = −
8π

3
µB ~µI ~mav; ~mav =

∫

dr′δT (r′)~m(r′), (13)

where

~m(r′) = 〈Φ|~σ δ(~r − ~r′)|Φ〉 (14)

σ are the Pauli matrices,

δT (r) =
1

4πr2

rT /2

[(1 + ǫ/2mc2)r + rT /2]
(15)

rT = Ze2/mc2 is the Thomas radius.

By comparison with (4) we get the expressions for the hyperfine fields ~Borb, ~Bdip and ~Bc:

~Borb = 2µB〈Φ|
S(r)

r3
~l |Φ〉 (16)

~Bdip = 2µB〈Φ|
S(r)

r3

[

3(~s ~̂r) ~̂r − ~s
]

|Φ〉, (17)

~Bc =
8π

3
µB ~mav (18)

In Blügel et al. formulation contact field is parallel to the spin density on nucleus. Note that assuming that ~mav = 2~s
Bc of A equals to −Bc of B.
In nonrelativistic limit S(r) = 1 and comparison with eqs. (5, 6) shows that in all cases the Abragam and Bleaney
hyperfine fields are negative of Blügel et al. hyperfine fields.
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Assuming that ~Bdip arises from electrons with orbital moment l, (17) may be recast by using the equivalent operators
(A, 17.43, 17.44 I did not check it and the sign in following eq. seems to me suspicious, but I do not believe that A
will carry such mistake to all the following formulae.)

3(~s ~̂r)~̂r − ~s ,−→
2

(2l + 3)(2l − 1)

[

l(l + 1)~s −
3

2
(~l ~s)~l −

3

2
~l (~l ~s)

]

(19)

which gives

~Bdip =
4µB

(2l + 3)(2l − 1)
〈Φ|

S(r)

r3

[

l(l + 1)~s −
3

2
(~l ~s)~l −

3

2
~l (~l ~s)

]

|Φ〉 (20)

Conclusion: comparison of A and B shows that the sign of the hyperfine field as given by A is opposite

to the one given by B.

The projections of ~Borb, ~Bdip on the quantization axis ζ are

Borb
ζ = 2µB〈Φ|

S(r)

r3
lζ |Φ〉, (21)

Bdip
ζ =

4µB

(2l + 3)(2l − 1)
〈Φ|

S(r)

r3

[

l(l + 1)sζ −
3

2
(~l ~s) lζ −

3

2
lζ (~s~l )

]

|Φ〉 (22)

C. Bc in WIEN code

Bc is calculated by program MIXER. First, the subroutine HYPER calculates the electron density hyperf at the
spherical slab around the nucleus

hyperf =
qel

4

3
π(r3

T − r3
1)

, (23)

where qel is number of electrons in the spherical slab

qel =

∫ rT

r1

ρ00(r)dr (24)

ρ00 is the spherical component of the radial density, rT is Thomas radius, r1 is the first point in spherical mesh of
given atom. hyperf has three indexes: hyperf(atom, elc, spin), elc= 1,2,3,4 correspond to valence, semicore, core
and total density, spin=1,2 corresponds to ↑, ↓. Afterwards in the main program MIXER Bc is calculated in kG:

Bc(atom, elc) = 524.3 [hyperf(atom, elc, 1)− hyperf(atom, elc, 2)] . (25)

Conclusion: Bc in WIEN has the same sign as the spin density and it corresponds to Blügel et al.
approach.

II. Borb AND Bdip IN VERSION 5 OF WIEN2K

A. Mean value of on-site operators

Equations (16,20) require evaluation of the mean value of a single particle operator Ô(r,~l, ~s) that belongs to a
specific atom. We’ll neglect any contributions beyond corresponding atomic sphere. Total mean value is then the sum
over orbital numbers (note that we neglect the contribution nondiagonal in l, i.e. the crossterms 〈l, m|Ô|l′m′〉; l 6= l′).
The population matrix that is calculated by the program LAPWDM may then be used to evaluate the mean value.
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B. Population matrix

In the atomic spheres the basis functions are atomic-like. As a consequence their angular part is described by
spherical functions Ylm(r̂). The Kohn-Sham eigenfunctions ϕi are linear combinations of the basis functions, thus
in a given atomic sphere they may be represented as linear combinations of Ylm(r̂) too. The population matrix n̂l

is defined as an operator in the |l, m, σ > subspace (ml = −l, ...l; σ = ±1/2) of the atomic-like states. The matrix
elements of n̂l are (we adopt here the definition used by Shick et al. [4] eq. 12)

n̂l,mσ,m′σ′ =
∑

εi≤EF

〈l, m, σ|ϕi〉〈ϕi|l, m
′, σ′〉 (26)

The population matrix is hermitean: nl,mσ,m′σ′ = (nl,m′σ′,mσ)∗. The cross terms σ = ∓1/2, σ′ = ±1/2 are nonzero
when the spin-orbit interaction is present or the system has noncollinear spins. In WIEN the population matrix is
calculated in the local coordinate system of given site.

C. Mean value

The mean value of the single particle operator Ô may be expressed as

〈Φ|Ô|Φ〉 =
∑

εi≤EF

〈ϕi|Ô|ϕi〉. (27)

Assuming that Ô is nonzero within the atomic sphere only and neglecting the terms nondiagonal in l, this may be
rewriten as

∑

εi≤EF

σσ′

∑

lmm′

〈ϕi|lmσ〉〈lmσ|Ô|lm′σ′〉〈lm′σ′|ϕi〉 =

σσ′

∑

lmm′

Ôlmσ,lm′σ′

∑

εi≤EF

〈ϕi|lmσ〉〈lm′σ′|ϕi〉 = (28)

σσ′

∑

lmm′

Ôlmσ,lm′σ′ n̂l,m′σ′,mσ =
∑

l

Tr (n̂lÔ).

III. IMPLEMENTATION TO WIEN2K

A. Population matrix

Population matrices n̂l are calculated by the package LAPWDM. The input data are described in Table I.
The principal subroutine is L2MAIN that is shortened and modified version of L2MAIN of the LAPW2 package.

L2MAIN calls subroutine XSPLT that calculates the unsymmetrized matrix

xqtl(ly, lpy, mu, ii, nd) =
∑

εi≤EF

〈ϕi|lm
′σ′〉〈lmσ|ϕi〉 (29)

where mu is index of equivalent atom, nd = 1..Nl is index, specifying the orbital number. Indices ly = m+ l+1, lpy =
m′ + l + 1 numerates m, m′, acquiring values 1 ≤ ly, lpy,≤ 2l + 1. ii is the spin index in the calculation with the
spin-orbit:

ii = 1, 2, 3 corresponds to the sequence 〈↑ | ↑〉 , 〈↑ | ↓〉 , 〈↓ | ↓〉. Matrix ˆxqtl is hermitean conjugated to matrix n̂
defined by (26).

Note that because complete calculation of xqtl is done within the loop over the atom types, xqtl has no index
specifying the type of the atom.

Matrix xqtl is then symmetrized by applying to it all symmetry operations as listed in struct file, summing the
results and dividing it by the number of symmetry operations. The details of symmetrization depend on whether
calculation is with or without the s-o coupling and whether it is spin-polarized or not.
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Emin only eigenfunctions with εi ≥ Emin will be considered

Natoms number of atom types for which n̂ will be calculated

iatom, Nl, (l1..lNl
) index of atom type, number of l′s, orb. numbers.

krad, kls r-index and (l, s)-index identifying operator Ô.

TABLE I: Input data for LAPWDM. Last line is added only if calculation of Ô mean value is required. Third line is repeated
Natom times, Emin is important in case when it is desirable to obtain n̂ separately for valence and semicore states (represented
by local orbitals).

krad Ôr kls Ôls

1 Î 1 Î

2 r−3/2 P̂ 2 ŝζ

3 r−3/2 P̂ 3 l̂ζ

4 3 l̂2ζ − l (l + 1)

5 2
(2l−1)(2l+3)

h

3 l̂2ζ − l (l + 1)
i

sζ

TABLE II: Operators corresponding to krad and kls input. P̂ is projector on the large component of the relativistic wave
function.

The output of standard LAPWDM calculation are the matrices ˆxqtl = n̂+

l , the mean value of spin and orbital

operator 〈~s 〉, 〈~l 〉 and their projection on the direction of magnetization (for s-o calculation) as specified in case.inso
file.

B. Mean value of operator Ôl

Within the subspace |lm〉 with l fixed, we may use the equivalent operator approach (see [2] eq. 17.44) and express:

~s − 3(~s ~̂r ) ~̂r =
2

(2l + 1)(2l − 1)

[

l(l + 1)~s −
3

2
~l (~l ~s ) −

3

2
(~l ~s )~l

]

. (30)

Operators in (16, 17) are then products of |~r| and ~l, ~s dependent operators:

Ô = Ôr Ôls. (31)

For l fixed, the radial parts of the basis functions ul(r), u̇l(r), ev. local orbitals are m-independent. Providing the

relativistic correction is neglected (i.e. S(r) = 1 in eqs. 16, 17), the radial and angular parts of 〈Ô〉 may be calculated
outside the loop over the eigenvectors. This is performed in subroutines RADINT and COUPLX. The data krad, kls
specifying Ôr, Ôls are given in the last line of the input file. Possible values of krad, kls and corresponding operators
are listed in Table II. Any allowed krad could be combined with any allowed kls so that e.g. krad = 1, kls = 2
corresponds to sζ operator.

To calculate Bdip
ζ it is assumed that ~l ‖ ~s ‖ ζ. (32) then reduces to:

Bdip
ζ =

4µB

(2l + 3)(2l − 1)
〈Φ|

S(r)

r3
sζ

[

l(l + 1) − 3 l2ζ
]

|Φ〉 (32)

To obtain Borb in T from the mean value of operator in Tab. 2, specified by krad = 3, kls = 3 this mean value
should be multiplied by factor 12.5169.

To obtain Bdip in T from the mean value of operator in Tab. 2, specified by krad = 3, kls = 5 this mean value
should be multiplied by factor -12.5169.

C. Approximations

Below the approximation made are summarized



6

• Relativistic mass enhancement is neglected (S(r) = 1 assumed). This is good approximation for 3d atoms,
worse for RE and bad for actinides [3]. It could be corrected, but some programming is necessary. Note that
relativistic mass enhancement was included in the AVERX program of WIEN97.

• When calculating Bdip

~l ~s = lζsζ (33)

was assumed. This may be corrected easily and I’ll do it.

• Further assumption was that

〈Ô(r)Ô(~l, ~s)〉 = 〈Ô(r)〉〈Ô(~l, ~s)〉. (34)

I do not know how difficult it would be to correct this approximation.

• Contributions from the interstitial and from 〈l||l′〉 terms were neglected.

IV. APPENDIX: CALCULATION OF Tr(Ôn̂l)

Calculation of Tr(Ôn̂l) is performed in output.f of LAPWDM package. Relevant part is given below. Two points
to note:
calculation holds only for Ô for which the crossterms 〈↑ |Ô| ↓〉 = 0.

Ô has inverted sequence of spin indexes relative to n̂l:
O11 = 〈↓ |Ô| ↓〉, O12 = 〈↓ |Ô| ↑〉, O22 = 〈↑ |Ô| ↑〉.

! for <|X|> calculation replace usym by usym*coup

N=2*LL+1
if(krad.ne.0)then

! coup has inverted order 1 ... dn, 2 ... up and is diagonal in spin
do ii=1,3

do i=1,n
do j=1,n
mj=j-ll-1

uhelp(i,j,ii)=czero
do k=1,n

mk=k-ll-1
if(ii.eq.1)then

uhelp(i,j,ii)=uhelp(i,j,ii)+usym(i,k,ii)*coup(ll,mj,mk,2,2)
else if(ii.eq.3)then

uhelp(i,j,ii)=uhelp(i,j,ii)+usym(i,k,ii)*coup(ll,mj,mk,1,1)
endif

enddo
enddo

enddo
enddo

usym is symmetrized xqtl and therefore

uhelp = Ô ˆxqtl
+

= Ôn̂
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