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0.1 In brief: the EFG and how it is obtained in LAPW

The EFG is a traceless symmetric tensor of rank 2, defined as the second derivative
(with respect to spatial coordinates) evaluated at the position of the nucleus (r⃗ = 0⃗):

Vij =
∂2V (r⃗)

∂xi ∂xj

∣∣∣∣∣
r=0

(0.1)

Five independent quantities have to be provided in order to determine the tensor un-
ambiguously 1. This can be done either in cartesian notation as a traceless symmetric
3x3-matrix, or in spherical coordinates by 5 ‘angular momentum’ components of rank 2
(L=2, M=-2, -1, 0, 1, 2).

In WIEN2k the 5 spherical components of the EFG tensor are calculated (since the
potential is calculated using a spherical notation) and the cartesian components of the
EFG tensor are obtained by evaluating:

Vij =

√
15

16π
lim
r→0

1

r2
·


V22(r)− 1√

3
V20(r) V2,−2(r) V21(r)

V2,−2(r) −V22(r)− 1√
3
V20(r) V2,−1(r)

V21(r) V2,−1(r)
2√
3
V20(r)

 . (0.2)

In either notation, one is most interested in the principal component, which is Vzz

(cartesian) or V20 (spherical). 2

Vzz can be obtained from the charge density ρ(r⃗) in the following way:

Vzz =
∫

ρ(r)
2P2(cosϑ)

r3
dr (0.3)

In the LAPW method, ρ(r⃗) is expressed by lattice harmonics, i.e. under an LM-form:

ρLM(r) =
∑

E<EF

∑
lm

∑
l′m′

Rlm(r)Rl′m′(r)GMmm′

Lll′ (0.4)

The Rlm are radial functions with angular momentum l or l’, and the G are the so-called
Gaunt numbers (an integral over a product of spherical harmonics). Because of the
product with P2 ∝ Y20 in the expression of Vzz (Eq. 0.3), only the component ρ20 will
be important. After this, the Gaunt numbers further limit the number of contributions:
for L=2 and M=0, only l=l’=1 and l=l’=2 (and to a minor extent l=0, l’=2 and l=1,
l’=3) give non-zero Gaunt numbers. We call this p-p, d-d (s-d and p-f) contributions to
the EFG.
1Due to the permutation of partial derivatives the tensor has to be symmetric and due to the Poisson
equation (ΣiVii = ρ(0) = 0) the tensor has to be traceless ⇒ 5 degrees of freedom.

2In the code the potential is stored as r2vLM (r) and the LM -components are given in 15
16π which is

why this prefactor is omitted in the outputfiles (see page 7 and 11).
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0.2 Example: body-centered tetragonal In

These are the input files:

case.struct:

In

B LATTICE,NONEQUIV.ATOMS: 1139 I4/mmm

MODE OF CALC=RELA unit=ang

6.145960 6.145960 9.346780 90.000000 90.000000 90.000000

ATOM -1: X=0.00000000 Y=0.00000000 Z=0.00000000

MULT= 1 ISPLIT= 8

In NPT= 781 R0=0.00001000 RMT= 2.5000 Z: 49.0

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

0 NUMBER OF SYMMETRY OPERATIONS

case.inst:

In 1

Kr 4 5

4, 2,2.0 N

4, 2,2.0 N

4,-3,3.0 N

4,-3,3.0 N

5,-1,1.0 N

5,-1,1.0 N

5, 1,1.0 N

5, 1,0.0 N

*** End of Input

*** End of Input

Run this case to self consistency using GGA (PBE) and with a separation energy of −6.5
Ry in lstart. Use e.g. Rmt*Kmax=7 and 40 k-points in the IBZ (=400 points as input for
kgen), which is not too accurate but very fast for a try-out. With these settings and an
energy convergence criterion of 10−6 Ry, you will end up with :EFG001=3.74 · 1021 V/m2.
Inspection of the following part of case.scf learns that there are six 4p-electrons at −5.02
Ry, 10 4d-electrons at about −0.65 Ry and some tendency to localize s-electrons at -0.24
Ry (the Fermi energy :FER=0.41):
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ATOMIC SPHERE DEPENDENT PARAMETERS FOR ATOM In

OVERALL ENERGY PARAMETER IS 0.3000

OVERALL BASIS SET ON ATOM IS LAPW

E( 1)= 0.3000

APW+lo

E( 1)= -5.0225 E(BOTTOM)= -5.040 E(TOP)= -5.005

LOCAL ORBITAL

E( 2)= -0.680 E(BOTTOM)= -0.850 E(TOP)= -0.510

APW+lo

E( 2)= 0.3000

LOCAL ORBITAL

E( 0)= 0.3000

APW+lo

K= 0.14286 0.14286 0.14286 1

:RKM : MATRIX SIZE 79LOs: 17 RKM= 6.98 WEIGHT= 8.00 PGR:

EIGENVALUES ARE:

-5.0217440 -5.0205144 -5.0204366 -0.6625649 -0.6594197

-0.6558732 -0.6524609 -0.6454063 -0.2362241 0.9171429

0.9306819 1.1476094 1.2111875 1.3829636 1.4540965

*******************************************************

Before proceeding, it is instructive to produce a Density of States (DOS) over a wide
energy region first. Use the following case.int:

In

-5.50 0.0001 2.000 0.0002 EMIN, DE, EMAX Gauss-broadening(>;de)

6 NUMBER OF DOS-CASES

0 1 tot atom,case=column in qtl-header, label

1 2 In-s

1 3 In-p

1 4 In-pz

1 5 In-pxy

1 6 In-d

It starts deep down in energy (−5.50), in order to show the 4p-states. You will have to
adapt the Y-scale in your plot if you want to see the valence region, which is invisible
due to the huge semi-core peaks (normally, you use e.g. −0.70 as starting energy, which
is just deep enough to see the 4d).
(For later comparison, use the file case.dos1 (and not case.dos1ev) to plot the density of
states, which gives the DOS in Ry with the Fermi energy at 0.41 Ry (instead of 0 Ry).)
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-6 -5 -4 -3 -2 -1 0 1
energy [Ry]

0

2

4

6
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12

tot
s
p
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px+py
d

DOS

EF

Now run lapw2, with ‘EFG’ instead of ‘TOT’ in case.in2 (do not change anything else for
now, also leave EMIN at the default −9.5). Here are some comments on the case.output2
file:

LL is what is called L in the Gaunt number defined above, MM=M, L=l, LP=l’, M=m,
MP=m’

L LL LP M MM MP CONTRIB TO EFG

0 2 2 0 0 0 -0.007

1 2 1 -1 0 -1 991.477

1 2 1 0 0 0 -1979.704

1 2 1 1 0 1 991.477

1 2 3 -1 0 -1 0.000

1 2 3 0 0 0 0.001

1 2 3 1 0 1 0.000

2 2 0 0 0 0 -0.007

2 2 2 -2 0 -2 118.671

2 2 2 -1 0 -1 -59.306

2 2 2 0 0 0 -118.609

2 2 2 1 0 1 -59.306
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2 2 2 2 0 2 118.671

3 2 1 -1 0 -1 0.000

3 2 1 0 0 0 0.001

3 2 1 1 0 1 0.000

3 2 3 -3 0 -3 0.001

3 2 3 -2 0 -2 0.000

3 2 3 -1 0 -1 -0.001

3 2 3 0 0 0 0.000

3 2 3 1 0 1 -0.001

3 2 3 2 0 2 0.000

3 2 3 3 0 3 0.001

You see that with our above notation, only (L=2, M=0) combinations appear here (LL-
column and MM-column). Each of these lines is related to a charge density component,
and gives the contribution of this component to the EFG. E.g., the first line has l=0 and
l’=2, which is an s-d contribution of -0.007. You can now add the different contributions
into:

s-d : -0.014
p-p : 3.250
p-f : 0.002
d-d : 0.013
f-f : 0.000
total: 3.251

This tells you that in the energy window EMIN - EFermi (here −9.0 → 0.41, which
is actually from minus infinity to EFermi) the dominant contribution to the EFG comes
from electrons with strong p-character (you have twice p (or p-p) because this comes
from wave-functions with p-character, that combine to give a density with p-p character,
which is a ‘pure’ p-electron density).

(Warning: note once more that E Fermi is at 0.41 Ry and not at 0.00 Ry. Also EMIN
is expressed with respect to the same zero-energy. If in the following chapters we will
start to change EMIN, we will not stop at 0.00 but continue up to 0.41 Ry: only for
EMIN > 0.41 the EFG due to the ’remaining states’ will be zero.)

TOTAL VCOUL 20 = 3.247

TOTAL VCOUL 22 = 0.000

TOTAL VCOUL 22M= 0.000

TOTAL VCOUL 21 = 0.000

TOTAL VCOUL 21M= 0.000

CARTH. TENSOR:

V xx=V 22-V 20/sqrt3; V yy=-V 22-V 20/sqrt3; V zz=2*V 20/sqrt3
V xy=V 22M; V xz=V 21; V yz=V 21M
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-1.87467 0.00000 0.00000

0.00000 -1.87467 0.00000

0.00000 0.00000 3.74935

Eigenvalues Eigen vectors (rows)

-1.8747 1.0000 0.0000 0.0000

-1.8747 0.0000 1.0000 0.0000

3.7493 0.0000 0.0000 1.0000

Indeed, we found above that the principal component of the EFG tensor in Cartesian
notation is 3.74 (which is

(
2/
√
3
)
3.247). Because of the symmetry of our crystal and the

type of atoms involved (p-block of the periodic table), there are no other contributions
here. (The small deviation is due to numerical rounding.)

The EFG is specified always in its Principal Axis System (PAS), i.e. an axis system
where the matrix is diagonal. Here the diagonalization was trivial, it was already diag-
onal.

Then the different l and l’ contributions are given in detail (which means that you
don’t have to add the different lines with L and LP yourself to get the total s-d, p-p, . . .
contributions):

------ pp ------------------

-1.87596 0.00000 0.00000

0.00000 -1.87596 0.00000

0.00000 0.00000 3.75193

Eigenvalues Eigen vectors (rows)

-1.8760 1.0000 0.0000 0.0000

-1.8760 0.0000 1.0000 0.0000

3.7519 0.0000 0.0000 1.0000

partial QMAT projection on eigenvectors of total tensor

-1.87596 0.00000 0.00000

0.00000 -1.87596 0.00000

0.00000 0.00000 3.75193

------ sd ------------------

0.00838 0.00000 0.00000

0.00000 0.00838 0.00000

0.00000 0.00000 -0.01676

...
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------ dd ------------------

-0.00719 0.00000 0.00000

0.00000 -0.00719 0.00000

0.00000 0.00000 0.01438

...

------ pf ------------------

0.00010 0.00000 0.00000

0.00000 0.00010 0.00000

0.00000 0.00000 -0.00019

...

------ ff ------------------

0.00000 0.00000 0.00000

0.00000 0.00000 0.00000

0.00000 0.00000 -0.00001

Except for slight numerical noise these Vzz contributions agree with the ones calculated
on page 6.

Finally the spatial dependence is printed:
EFG INSIDE SPHERE 1: 3.749388 UP TO R = 2.5000000

EFG INSIDE SPHERE 1: 3.742326 UP TO R = 2.1317469

EFG INSIDE SPHERE 1: 3.736701 UP TO R = 1.8177380

EFG INSIDE SPHERE 1: 3.733681 UP TO R = 1.5499830

EFG INSIDE SPHERE 1: 3.733771 UP TO R = 1.3216686

:
:

EFG INSIDE SPHERE 1: 3.680746 UP TO R = 0.5080383

:
:

Here you see how the EFG is dominated by the region very close to the nucleus: even
at only 20% of RMT , almost the full EFG is reached already.

Further analysis can be done. In case.scf, you will see :EFG001=3.74472 · 1021 V/m2,
which is slightly different from Vzz=3.74935 here. The latter value is also printed as
:VZZ001 in case.scf. This is the EFG inside the muffin tin sphere only. This is some-
times called the ‘valence EFG’ (not to be confused with a quantity with the same name
in the old point charge EFG model). The difference of both (3.74935−3.74472 =0.00463)
is the contribution from the interstitial region, and is sometimes called the ‘lattice EFG’
(again, not related to a quantity with that name in the point charge model). The lat-
tice EFG is usually very small, except for very light elements (with very extended wave
functions).
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Another step in the analysis is to look at the DOS you produced earlier. Consider the 4p-
states at −5.02 Ry. They are taken into account in our EFG-analysis with EMIN=−9.5
Ry. Now set EMIN=−4.0, and run lapw2 (with EFG) again. This will be the result:

-1.85322 0.00000 0.00000

0.00000 -1.85322 0.00000

0.00000 0.00000 3.70644

This is almost - but not exactly - the same as the previous result. The conclusion must
be that all the state between −9.0 and −4.0 Ry contribute 3.7519 − 3.70644 = 0.05
(which is only 1%) to the EFG. Hence, the 4p-electrons do not contribute, which is
what you could expect from semi-core states. There is also a d-peak at −0.65. Put
EMIN=−0.4, and rerun lapw2. You find:

-1.90667 0.00000 0.00000

0.00000 -1.90667 0.00000

0.00000 0.00000 3.81335

The contribution from states between −4.0 and −0.4 Ry is therefore 3.70644−3.81335 =
−0.11. This analysis cannot pin down from which electrons this contribution is, as the
DOS for s, p and d is nonzero at about −0.65 Ry: hybridization.

It will be clear now that the EFG is made by the p-electrons in the valence region
(> −0.4 Ry), which are the 5p electrons. In order to visualize their contribution, make
with your DOS-output the following function as a function of energy:

1

2
pxy − pz (0.5)

(preferably use a DOS produced with −0.7 as starting energy). Now integrate this
function from −0.7 Ry up to E, and plot it as a function of E. The value of this
integral at the Fermi energy is roughly proportional to the EFG by p-electrons (if this
integral-function would be very steep at the Fermi energy, it means that the EFG is
very sensitive to small changes in e.g. the number of electrons, or the temperature, or
whatever else that can change either the position of the Fermi energy or the DOS at the
Fermi energy.). Published examples on the analysis of this p-anisotropy function can be
found e.g. in PRB 66 (2002) 195103 and in PRB 70 (2004) 155418. For d-electrons, the
relevant function is (PRB 42 (1990) 2051):

dxy + dx2−y2 −
1

2
(dxz + dyz)− dz2 . (0.6)
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Remark I: the value for the calculated EFG (resp. Vzz) depends on:

• the basis set size (RKMAX)

• the number of irreducible k-points

• the accuracy of your convergence criteria

• the XC-functional (LDA or GGA)

• the structure (i.e. portion of atoms, ratio of lattice constants)
(sometimes an optimization can help)

The first three criteria should always be tested for convergence (try with this In example:
how much larger does the k-mesh has to be to provide a really converged result?). The
EFG might be very sensitive to small changes in the structure (lattice constants, c/a
ratio, internal positions). Comparing the EFG for the experimental structure and a fully
optimized structure is recommended. In very sensitive cases, it might depend on the
XC-functional as well (it cannot be said in general which choice to make then).

Remark II:

If the EFG for one (or more) atom(s) of a compound is zero by symmetry, it will not
be printed in the case.scf or case.output2 out files. Instead of printing EFG00x = 0.0 ·
1021 V/m2 there will be no EFG00x at all in the output files.
Such symmetry conditions appear if the atom under consideration has cubic symmetry,
which means that the point group of this atom is cubic. For crystals, there are 5 such
point groups: three tetrahedral ones (23, -43m and m-3) and two octahedral ones (432
and m-3m). Or in Schönfliess notation: T , Td, Th, O and Oh. You can check if this is
the case by taking a look into case.outputs or case.outputsgroup, where the point groups
for all atom sorts (Wyckoff positions) are printed.

0.3 The orientation of the EFG tensor

There are two different coordinate systems to consider: first the global coordinate sys-
tem (x, y, z) and second the local coordinate system (x′, y′, z′) of the atomic site under
consideration. The global system is rotated into the local coordinate system with the
local rotation matrix R: Rr⃗ = r⃗′.
This is done for each atomic site. There are two reasons for this procedure: it makes
the code numerically more efficient (it minimizes the number of LM combinations in the
lattice harmonics) and furthermore it is needed for interpretation. (Check appendix A
in the userguide for more information.)

The EFG is calculated in the local coordinate system, and it is printed (in case.scf0 and
case.output2) in this one as well as in its PAS (principal axis system) with respect to
the local coordinate system. This will be more clear soon.
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0.3.1 trivial case

Example In (see section 0.2):

the local rotation matrix (check case.struct) is unity:

ATOM -1: X=0.00000000 Y=0.00000000 Z=0.00000000

MULT= 1 ISPLIT=-2

In NPT= 781 R0=0.00001000 RMT= 2.5000 Z: 49.0

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

the main direction of the EFG (check case.scf0) is unity as well:

:EFG001: EFG = 3.74472 *10**21 V / m**2

V20 TOT/SRF= 3.24303 0.00307

V22 TOT/SRF= 0.00000 0.00000

V22M TOT/SRF= 0.00000 0.00000

V21 TOT/SRF= 0.00000 0.00000

V21M TOT/SRF= 0.00000 0.00000

-1.87236 0.00000 0.00000 -1.87236 0.00000 0.00000

0.00000 -1.87236 0.00000 0.00000 -1.87236 0.00000

0.00000 0.00000 3.74472 0.00000 0.00000 3.74472

MAIN DIRECTIONS OF THE EFG 1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

Here you see first all contributions in lm representation. Then the cartesian EFG tensor
(left matrix) is calculated (according to (Eq. 0.2)). The EFG has diagonal form if the
off-diagonal terms vanish: V22M=V21=V21M=0. This is the case here, and the EFG tensor
in the PAS (right matrix) equals the left matrix. (If additionally V22=0, then there is
no asymmetryparameter η. This is also the case here.)

Since the local rotation matrix is unity, the PAS of the EFG coincides with the global
coordinate system. One sees immediately, that the main component Vzz points in z-
direction (parallel to the c-axis).
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0.3.2 semi trivial case 1

Example Ca in CaGa4 (see appendix):

the local rotation matrix (check case.struct) is unity:

ATOM -1: X=0.00000000 Y=0.00000000 Z=0.00000000

MULT= 1 ISPLIT= 8

Ca NPT= 781 R0=0.00005000 RMT= 2.50000 Z: 20.0

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

the main direction of the EFG (check case.scf0) not:

:EFG001: EFG = 0.65471 *10**21 V / m**2

V20 TOT/SRF= -0.30929 -0.00945

V22 TOT/SRF= -0.16361 -0.00535

V22M TOT/SRF= 0.44715 0.01402

V21 TOT/SRF= 0.00000 0.00000

V21M TOT/SRF= 0.00000 0.00000

0.01496 0.44715 0.00000 -0.29757 0.00000 0.00000

0.44715 0.34218 0.00000 0.00000 0.65471 0.00000

0.00000 0.00000 -0.35714 0.00000 0.00000 -0.35714

MAIN DIRECTIONS OF THE EFG 1.0000 0.6989 0.0000

-0.6989 1.0000 0.0000

0.0000 0.0000 1.0000

Here the V22M component is nonzero, which yields a non-diagonalized cartesian EFG
tensor in the local coordinate system (left matrix, M). In order to rotate this into
the PAS of the EFG (with respect to the local coordinate system) (right matrix, D)
it has to be diagonalized. The diagonalization matrix U consists of the eigenvectors:
D = U−1MU .

The eigenvectors (columnwise) are printed in the MAIN DIRECTIONS OF THE EFG. WIEN2k
has here the less common convention of normalizing the eigenvectors such that the largest
component is scaled to one.

If you calculate the eigenvalues of M yourself you obtain the diagonal elements of D.
As eigenvectors you obtain the unit vectors: (0.81964, -0.57288, 0) (for Vxx = −0.298),
(0.57288, 0.819639, 0) (for Vzz = 0.655) and (0, 0, 1) (for Vyy = −0.357). These vectors
have the same directions as the vectors in MAIN DIRECTIONS OF THE EFG, but different
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lengths. This is allowed, as an eigenvector is not uniquely defined: multiply it by what-
ever scalar, and it’s still an eigenvector.

You can check this and calculate U−1MU using the MAIN DIRECTION for U and the
normed eigenvectors for U , in both cases you will end up with D.

In this case (local rotation matrix is unity) the eigenvectors (MAIN DIRECTIONS) give you
the orientations of the Vxx, Vyy and Vzz in the global coordinate system (there is no other
transformation necessary). You can also see immediately, that the main component Vzz

does not point along one axis of the global coordinate system like in the trivial case:
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MAIN DIRECTIONS OF THE EFG
global coordinate system
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0.3.3 semi trivial case 2

Example Ga4 in Sr1−xGa2+3x (see appendix):

the local rotation matrix (check case.struct) is not unity:

ATOM -4: X=0.10000000 Y=0.90000000 Z=0.50000000

MULT= 3 ISPLIT= 8

-4: X=0.10000000 Y=0.20000000 Z=0.50000000

-4: X=0.80000000 Y=0.90000000 Z=0.50000000

Ga4 NPT= 781 R0=0.00005000 RMT= 2.3000 Z: 31.0

LOCAL ROT MATRIX: 0.0000000 0.5000000 0.8660254

0.0000000-0.8660254 0.5000000

1.0000000 0.0000000 0.0000000

the main direction of the EFG (check case.scf0) is unity:

:EFG004: EFG = -5.59592 *10**21 V / m**2

V20 TOT/SRF= 4.23714 -0.02839

V22 TOT/SRF= 3.14960 -0.00808

V22M TOT/SRF= -0.00002 0.00000

V21 TOT/SRF= 0.00000 0.00000

V21M TOT/SRF= 0.00000 0.00000

0.70329 -0.00002 0.00000 0.70329 0.00000 0.00000

-0.00002 -5.59592 0.00000 0.00000 -5.59592 0.00000

0.00000 0.00000 4.89263 0.00000 0.00000 4.89263

MAIN DIRECTIONS OF THE EFG 1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

Here the V22M component is almost zero (-0.00002) and therefore the cartesian EFG
tensor in the local coordinate system is almost diagonalized (M ≃ D). Therefore the
MAIN DIRECTIONS are the unit vectors e⃗x′ , e⃗y′ and e⃗z′ of the local coordinate system of
this atomic site.
But since the local rotation matrix is not unity, these directions do not coincide with the
unit vectors of the global coordinate system e⃗x, e⃗y and e⃗z. In order to get the information
how e⃗x′ , e⃗y′ and e⃗z′ lie in (x, y, z) we need the local rotation matrix:

Rr⃗ = r⃗′ ⇒ r⃗ = R−1r⃗′

By multiplying every unit vector e⃗x′ , e⃗y′ and e⃗z′ from the left with the inverse local
rotation matrix R−1 one obtains:
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Vxx in (x, y, z): e⃗x′ = (0, 0.5, 0.866025),
Vzz in (x, y, z): e⃗y′ = (0,−0.866025, 0.5) and
Vyy in (x, y, z): e⃗z′ = (1, 0, 0)
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0.3.4 non-trivial case

Example Ga8 in Sr1−xGa2+3x (see appendix):

the local rotation matrix is not unity:

ATOM -8: X=0.83333333 Y=0.16666667 Z=0.75000000

MULT= 3 ISPLIT= 8

-8: X=0.83333333 Y=0.66666666 Z=0.75000000

-8: X=0.33333334 Y=0.16666667 Z=0.75000000

Ga8 NPT= 781 R0=0.00005000 RMT= 2.3000 Z: 31.0

LOCAL ROT MATRIX: 0.0000000 0.5000000 0.8660254

0.0000000-0.8660254 0.5000000

1.0000000 0.0000000 0.0000000

and neither are the main directions of the EFG:

:EFG008: EFG = 7.98776 *10**21 V / m**2

V20 TOT/SRF= -3.31709 0.03286

V22 TOT/SRF= 5.13044 -0.03923

V22M TOT/SRF= -3.24893 -0.01261

V21 TOT/SRF= 0.00000 0.00000

V21M TOT/SRF= 0.00000 0.00000

7.04556 -3.24893 0.00000 7.98776 0.00000 0.00000

-3.24893 -3.21532 0.00000 0.00000 -4.15752 0.00000

0.00000 0.00000 -3.83025 0.00000 0.00000 -3.83025

MAIN DIRECTIONS OF THE EFG 1.0000 0.2900 0.0000

-0.2900 1.0000 0.0000

0.0000 0.0000 1.0000

Here the same things are true as discusted before: the left matrix is the cartesian EFG
tensor in the local coordinate system, the right matrix contains the eigenvalues of the
left one; it is the EFG in the PAS.

In the MAIN DIRECTIONS you see the (WIEN scaled) eigenvectors (again columnwise).
The unit vectors of these are: (0.960428, -0.278527, 0), (0.278527, 0.960428, 0) and(0,
0, 1).

In order to visualize the directions of the Vii components in the global coordinate system
(remember: the PAS is also in the local coordinate system) you have to use the (inverse)
local rotation matrix r⃗ = R−1r⃗′ and obtain:

Vzz in (x, y, z): e⃗′x = (0, 0.721425, 0.692492)
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Vyy in (x, y, z): e⃗′y = (0,−0.692492, 0.721425) and
Vxx in (x, y, z): e⃗′z = (1, 0, 0)
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MAIN DIRECTIONS OF THE EFG
global coordinate system

Remark

If the crystalstructure is orthogonal and primitive, the axes of the global coordinate
system are parallel to the lattice sides: (a,0,0), (0,b,0) and (0,0,c).

If the crystal structure is hexagonal, you have to consider the 120◦ angle between the a
and b. In this case the x-axis is not parallel to the lattice vector a. In the global axis
system, the lattive vector a is given by (

√
3a/2, -a/2,0), b by (0,a,0) and c by (0,0,c).

Check the userguide (table 4.4 in section 4.3.) for more information (also about more
complicated structures): the table gives the components of the lattice vectors a, b and
c (primitive unit cell) in the global axis system. (Note that in some cases these do not
coincide at first sight with the information given at the top of case.struct, where the
lattice vectors for the conventional unit cell are given).
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Appendix

A published EFG analysis of the ordered and disordered digallides and tetragallides that
are used as examples in this document can be found in Chem. Eur. J. 15 (2009) 1673-
1684 and Chem. Eur. J. 17 (2011) 7560-7568).

CaGa4
The input data is:

spacegroup 12 B2/m
a=6.039309243165Å, b= 6.028190176041Å, c=6.01398547783Å
α = 90◦, β = 90◦, γ = 118.922◦

ATOM 1 Ca: X=0.00000000 Y=0.00000000 Z=0.00000000
ATOM 2 Ga: X=0.40419184 Y=0.77126531 Z=0.00000000
ATOM 3 Ca: X=0.00000000 Y=0.50000000 Z=0.23446389
RMT (Ca)=2.5 au, RMT (Ga)=2.27 au
LDA with seperation energy -6.0Ry
2500 kpoints (582 irreducible kpoints)
RMTKmax = 7.0, l=10
convergence criteria: energy 0.000001 and charge 0.000001

Sr1−xGa2+3x
the input data is:

spacegroup: 156 P3m1
a=8.696800153129Å, b=8.696800153129Å, c=9.472200036167Å
α = 90◦ β = 90◦, γ = 120◦

ATOM 1 Sr1: X=0.00000000 Y=0.00000000 Z=0.00000000
ATOM 2 Sr2: X=0.50000000 Y=0.50000000 Z=0.00000000
ATOM 3 Sr3: X=0.50000000 Y=0.50000000 Z=0.50000000
ATOM 4 Ga4: X=0.10000000 Y=0.90000000 Z=0.50000000
ATOM 5 Ga5: X=0.33333333 Y=0.66666667 Z=0.75000000
ATOM 6 Ga6: X=0.66666667 Y=0.33333333 Z=0.25000000
ATOM 7 Ga7: X=0.16666667 Y=0.83333333 Z=0.25000000
ATOM 8 Ga8: X=0.83333333 Y=0.16666667 Z=0.75000000
ATOM 9 Ga9: X=0.33333333 Y=0.66666667 Z=0.25000000
ATOM 10 Ga10: X=0.66666667 Y=0.33333333 Z=0.75000000
ATOM 11 Ga11: X=0.83333333 Y=0.16666667 Z=0.25000000
ATOM 12 Ga12: X=0.16666667 Y=0.83333333 Z=0.75000000
RMT (Sr)=2.6 au, RMT (Ga)=2.3 au
LDA with seperation energy -6.0Ry
2000 kpoints (350 irreducible kpoints)
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RMTKmax = 7.0, l=10
convergence criteria: energy 0.000001 and charge 0.000001
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