
Running WIEN2K on Ranger

Running WIEN2K on Ranger
with both coarse and fine parallelism

Hang Liu

Texas Advanced Computing Center

May 8, 2012

Running WIEN2K on Ranger

Outline

• Introduction

• Setting WIEN2K in User’s Account

• Executing WIEN2K in Parallel

2

Running WIEN2K on Ranger

Introduction

WIEN2K

WIEN2K
• Software package for electronic structure calculations of solids

using density functional theory (DFT)

• Based on the full-potential (linearized) augmented plane-wave
(LAPW) + local orbitals (LO) methods

• Written in FORTRAN 90 and requires a UNIX operating
system since the programs are linked together via C-shell
scripts.

• Licensed software, not installed and supported system wide on
TACC systems.

3

Running WIEN2K on Ranger

Introduction

WIEN2K

User’s Major Requests

• How to setup WIEN2K on Ranger with optimal options ?

• How to execute WIEN2K in parallel ?

4

Running WIEN2K on Ranger

Setting WIEN2K in User’s Account

Setting WIEN2K in User’s Account
• Well described in the Part III of user manual

• Run the siteconfig lapw script and follow the guided setup
process

– intel compiler and mvapich
– R LIBS: blas, lapack, fftw
– PR LIBS: blas, lapack, scalapack, fftw, fftw mpi

• Run the userconfig lapw script to setup the proper envs
– Set a path to WIEN2k programs
– Set the stacksize to unlimited
– Set aliases
– Set environment variables ($WIENROOT, $SCRATCH)

5

Running WIEN2K on Ranger

Executing WIEN2K in Parallel

Two Levels of Parallelism
• Coarse grained parallelism: distributes k-points over multiple

task groups by utilizing c-shell scripts, shared file system and
passwordless login. NOT managed by MPI or OpenMP

• Fine grained parallelism: multiple tasks in one group for one
k-point calculation are managed by MPI and execute
scalapack and fftw mpi operations

• The TACC ibrun command for launching usual MPI
applications does not directly support WIEN2K parallel
execution

• The file named as .machines has to be presented in the
current working directory.

6

Running WIEN2K on Ranger

Executing WIEN2K in Parallel

The Structure of the .machines file
#=======================================

#This is a valid .machines file

#

granularity:1

1:alpha

1:beta

3:gamma:2 delta

3:delta:1 epsilon:4

residue:delta:2

lapw0:gamma:2 delta:2 epsilon:4

===

The sample from manual for following system

• 5 computers: alpha, ... epsilon
• epsilon has 4, and delta and gamma 2 cpus
• gamma, delta and epsilon are 3 times faster than alpha and beta

The layout of the .machines file

• A multiple row structure, and three types of the rows
• Rows started with keyword like granularity and residue: for load

balancing management
• Rows started with a number like 1 and 3: for host management used

in lapw1 and lapw2
• Row started with lapw0: for host management used in lapw0

The columns per row for lapw1 and lapw2: weight:machine name1:number1 machine name2:number2 ...

• weight is an integer to mark the relative speed of computers
• machine name[1/2/...] specifies the computer names
• number[1/2/...] specifies the number of cpus used on the computers

The load balancing keyword

• granularity enhances load balancing on heterogeneous environments
• residue specify the machine that calculates the residual k-points. Alternatively, remaining k-points can be distributed one by one

over all machines by setting extrafine:1

7

Running WIEN2K on Ranger

Executing WIEN2K in Parallel

On Ranger:

• granularity and weight are set to 1 since cores on Ranger nodes are
homogeneous

• residue can be ignored since extrafine:1 is more straightforward
• number[1/2/...] should be set as 1 since each core is identified as an

individual machine(host)
• machine name[1/2/...] shall be organized into the required “matrix”

form: the rows suggest the multiple concurrency for all k-points
calculations; the columns per row suggest the multiple concurrency of
scalapack and fftw mpi operations for each k-point

• The only concern is: the machine names are not known before the
SGE batch started.

– A utility script is needed and used in job script to generate the
.machines file in fly

– This script should group the tasks according to users’ inputs: the
number of rows/columns in.machines file

8

Running WIEN2K on Ranger

Executing WIEN2K in Parallel

Hosts in a SGE batch
• -pe TpNway NoNx16: job will be executed using the specified number of tasks (cores to

use) per node (”wayness”) and the number of nodes times 16 (total number of cores).
• $PE HOSTFILE will be created according to NoN, e.g.-pe 4way 32

i115-303.ranger.tacc.utexas.edu

i182-102.ranger.tacc.utexas.edu

• Accounting the TpN, the host list will be saved into $hostfile tacc

i115-303.ranger.tacc.utexas.edu

i115-303.ranger.tacc.utexas.edu

i115-303.ranger.tacc.utexas.edu

i115-303.ranger.tacc.utexas.edu

i182-102.ranger.tacc.utexas.edu

i182-102.ranger.tacc.utexas.edu

i182-102.ranger.tacc.utexas.edu

i182-102.ranger.tacc.utexas.edu

• This is what ibrun command does to prepare hostfile for usual MPI jobs

9

Running WIEN2K on Ranger

Executing WIEN2K in Parallel

Constructing .machine from $hostfile tacc, e.g. for lapw1 and lapw2 parts:

==

set proclist=‘cat $hostfile_tacc‘

set nproc=‘cat hostfile_tacc | wc -l‘

set i=1

while ($i <= $nproc)

echo -n ’1:’ >>.machines

@ i1 = $i + $mpisize_per_k

@ i2 = $i1 - 1

echo $proclist[$i-$i2] ’:1’ >>.machines

set i=$i1

end

echo ’granularity:1’ >>.machines

echo ’extrafine:1’ >>.machines

===

10

Running WIEN2K on Ranger

Executing WIEN2K in Parallel

Or more efficiently, just one awk statement to replace the while loop

• Rows for lapw1 and lapw2:

awk -v div=mpisize_per_k ’{_=int(NR/(div+1.0e-10))} {a[_]=((a[_])?a[_]FS:x)$1;

l=(_>l)?_:l}END{for(i=0;i<=l;++i)print "1:"a[i]":1"}’

$hostfile_tacc >>.machines

• Row lapw0

awk -v div=mpisize_lapw0 ’{_=int(NR/(div+1.0e-10))} {a[_]=((a[_])?a[_]FS:x)$1;

l=(_>l)?_:l}END{for(i=0;i<=0;++i)print "lapw0:"a[i]":1"}’

$hostfile_tacc >>.machines

11

Running WIEN2K on Ranger

Executing WIEN2K in Parallel

Packing up: wien2k tasks utility script:
• Usage: wien2k tasks mpisize lapw0 mpisize per k
• mpisize lapw0: number of machines used by

lapw0 mpi, should be smaller than the total
number of the hosts of the job

• mpisize per k: number of machines used by
lapw1 mpi and lapw2 mpi for each k-point, should
be a divisor of the total number of the hosts of the
job

Sample usage in usual SGE script:

================================

!/bin/tcsh

#$ -V

#$ -cwd

#$ -N wien2k

#$ -e err.$JOB_ID

#$ -o out.$JOB_ID

#$ -pe 16way 64

#$ -q development

#$ -l h_rt=00:05:00

./wien2k_tasks 8 8

runsp_lapw -p -i 1

=================================

12

Running WIEN2K on Ranger

Executing WIEN2K in Parallel

E.g. when -pe 16way 64, the ./wien2k tasks 8 8 will generate .machines file as

#==

#

granularity:1

lapw0:i115-203 i115-203 i115-203 i115-203 i115-203 i115-203 i115-203 i115-203:1

1:i115-203 i115-203 i115-203 i115-203 i115-203 i115-203 i115-203 i115-203:1

1:i115-203 i115-203 i115-203 i115-203 i115-203 i115-203 i115-203 i115-203:1

1:i115-301 i115-301 i115-301 i115-301 i115-301 i115-301 i115-301 i115-301:1

1:i115-301 i115-301 i115-301 i115-301 i115-301 i115-301 i115-301 i115-301:1

1:i182-103 i182-103 i182-103 i182-103 i182-103 i182-103 i182-103 i182-103:1

1:i182-103 i182-103 i182-103 i182-103 i182-103 i182-103 i182-103 i182-103:1

1:i182-203 i182-203 i182-203 i182-203 i182-203 i182-203 i182-203 i182-203:1

1:i182-203 i182-203 i182-203 i182-203 i182-203 i182-203 i182-203 i182-203:1

extrafine:1

#===

• Since mpisize lapw0=8, there are 8 cores used for lapw0 mpi
• All 64 cores are used for lapw1 mpi and lapw2 mpi
• Since mpisize per k=8, there are 64

8 = 8 groups(lines) of cores, each k-point calculation will
be carried out by one group of cores with parallelism boosted by scalapack and fftw mpi

• Assuming there are 120 k-points, and there are 8 groups, so each one group will compute
120
8 = 15 k-points

• Results will be summed up when all k-point calculations are finished

13

Running WIEN2K on Ranger

Executing WIEN2K in Parallel

Summary

• The wien2k tasks mpisize lapw0 mpisize per k works
conveniently for users to manage the task geometry of the
coarse and fine grained parallelism in WIEN2K

• The optimal values for mpisize lapw0 mpisize per k need to
be figured out by users according to the special calculations
they do. The k-point parallelism should be considered at first
because it is trivially in parallel and the most efficient

• One more thing still under investigation: process affinity when
multiple MPI binaries executed on ONE node.

14

	Introduction
	WIEN2K

	Setting WIEN2K in User's Account
	Executing WIEN2K in Parallel

