Running WIEN2K on Ranger

Running WIEN2K on Ranger

with both coarse and fine parallelism

Hang Liu
Texas Advanced Computing Center

May 8, 2012

TACC

THE UNIVERSITY OF

TEXAS

AT AUSTIN

Running WIEN2K on Ranger

Outline

e Introduction
e Setting WIEN2K in User's Account

e Executing WIEN2K in Parallel

TACC

THE UNIVERSITY OF

TEXAS

AT AUSTIN

Running WIEN2K on Ranger
L Introduction
L wieN2k

WIEN2K

e Software package for electronic structure calculations of solids
using density functional theory (DFT)

e Based on the full-potential (linearized) augmented plane-wave
(LAPW) + local orbitals (LO) methods

e Written in FORTRAN 90 and requires a UNIX operating
system since the programs are linked together via C-shell
scripts.

o Licensed software, not installed and supported system wide on
TACC systems.

TACC 3 TEXAS

AT AUSTIN

Running WIEN2K on Ranger
L Introduction
L wieN2k

User’'s Major Requests

e How to setup WIEN2K on Ranger with optimal options ?
e How to execute WIEN2K in parallel ?

TACC TEXAS

4 AT AUSTIN

Running WIEN2K on Ranger
LSetting WIEN2K in User's Account

Setting WIEN2K in User’s Account

o Well described in the Part Il of user manual
e Run the siteconfig_lapw script and follow the guided setup
process
— intel compiler and mvapich
— R_LIBS: blas, lapack, fftw
— PR_LIBS: blas, lapack, scalapack, fftw, fftw_mpi
o Run the userconfig_lapw script to setup the proper envs
— Set a path to WIEN2k programs
— Set the stacksize to unlimited

— Set aliases
— Set environment variables ($WIENROOT, $SCRATCH)

TACC 5 TEXAS

AT AUSTIN

Running WIEN2K on Ranger
LE><e<:uting WIEN2K in Parallel

Two Levels of Parallelism

o Coarse grained parallelism: distributes k-points over multiple
task groups by utilizing c-shell scripts, shared file system and
passwordless login. NOT managed by MPI or OpenMP

e Fine grained parallelism: multiple tasks in one group for one
k-point calculation are managed by MPI and execute
scalapack and fftw_mpi operations

e The TACC ibrun command for launching usual MPI
applications does not directly support WIEN2K parallel
execution

e The file named as .machines has to be presented in the
current working directory.

TACC TEXAS

6 AT AUSTIN

Running WIEN2K on Ranger
LE><e<:uting WIEN2K in Parallel

The Structure of the .machines file

The sample from manual for following system
e 5 computers: alpha, ... epsilon
e epsilon has 4, and delta and gamma 2 cpus
e gamma, delta and epsilon are 3 times faster than alpha and beta

#This is a valid .machines file
#

granularity:1 The layout of the .machines file

1:alpha o A multiple row structure, and three types of the rows

1:beta * Rows started with keyword like granularity and residue: for load
3:gamma:2 delta balancing management

3:delta:1 epsilon:4 o Rows started with a number like 1 and 3: for host management used
residue:delta:2 in lapwl and lapw2

lapw0:gamma:2 delta:2 epsilon:4 * Row started with lapwO0: for host management used in lapw0O

The columns per row for lapwl and lapw2: weight:machine namel:numberl machine name2:number2 ...
o weight is an integer to mark the relative speed of computers
e machine name[1/2/...] specifies the computer names
e number[1/2/...] specifies the number of cpus used on the computers
The load balancing keyword
e granularity enhances load balancing on heterogeneous environments
e residue specify the machine that calculates the residual k-points. Alternatively, remaining k-points can be distributed one by one
over all machines by setting extrafine:1

TACC TEXAS

7 AT AUSTIN

Running WIEN2K on Ranger
LE><e<:uting WIEN2K in Parallel

On Ranger:

granularity and weight are set to 1 since cores on Ranger nodes are
homogeneous
residue can be ignored since extrafine:1 is more straightforward
number[1/2/...] should be set as 1 since each core is identified as an
individual machine(host)
machine name[1/2/...] shall be organized into the required “matrix”
form: the rows suggest the multiple concurrency for all k-points
calculations; the columns per row suggest the multiple concurrency of
scalapack and fftw_mpi operations for each k-point
The only concern is: the machine names are not known before the
SGE batch started.
— A utility script is needed and used in job script to generate the
.machines file in fly
— This script should group the tasks according to users’ inputs: the
number of rows/columns in.machines file

TACC : TEXAS

AT AUSTIN

Running WIEN2K on Ranger
LE><e<:uting WIEN2K in Parallel

Hosts in a SGE batch

o -pe TpNway NoNx16: job will be executed using the specified number of tasks (cores to
use) per node ("wayness") and the number of nodes times 16 (total number of cores).

o $PE_HOSTFILE will be created according to NoN, e.g.-pe 4way 32

i115-303.ranger.tacc
1182-102.ranger.tacc
e Accounting the TpN, the

i115-303
i115-303
i115-303
i115-303
i182-102
i182-102
i182-102
i182-102

.ranger.
.ranger.
.ranger
.ranger.
.ranger.
.ranger.
.ranger.
.ranger.
e This is what ibrun command does to prepare hostfile for usual MPI jobs

tacc
tacc

.tacc

tacc
tacc
tacc
tacc
tacc

.utexas.
.utexas.
host list will be saved into $hostfile_tacc
.utexas
.utexas
.utexas
.utexas
.utexas
.utexas
.utexas
.utexas

edu
edu

.edu
.edu
.edu
.edu
.edu
.edu
.edu
.edu

TACC

THE UNIVERSITY OF

TEXAS

AT AUSTIN

Running WIEN2K on Ranger
LE><e<:uting WIEN2K in Parallel

Constructing .machine from $hostfile tacc, e.g. for lapwl and lapw2 parts:

set proclist=‘cat $hostfile_tacc’

set nproc=‘cat hostfile_tacc | wc -1°
set i=1

while ($i <= $nproc)

echo -n ’1:’ >>.machines

@ il = $i + $mpisize_per_k

@ i2 = $i1 - 1

echo $proclist[$i-$i2] ’:1° >>.machines
set i=8§il

end

echo ’granularity:1’ >>.machines
echo ’extrafine:1’ >>.machines

TACC TEXAS

10 AT AUSTIN

Running WIEN2K on Ranger
LE><e<:uting WIEN2K in Parallel

Or more efficiently, just one awk statement to replace the while loop
e Rows for lapwl and lapw2:
awk -v div=mpisize_per_k ’{_=int(NR/(div+1.0e-10))} {al_l=((al_1)7al_]FS:x)$1;
1=(_>1)7_:1}END{for(i=0;i<=1;++i)print "1:"a[i]":1"}’
$hostfile_tacc >>.machines
® Row lapw0
awk -v div=mpisize_lapwO ’{_=int(NR/(div+1.0e-10))} {al_l1=((al_1)7al_1FS:x)$1;
1=(_>1)7_:1}END{for(i=0;i<=0;++i)print "lapwO:"a[i]":1"}’
$hostfile_tacc >>.machines

TACC TEXAS

11 AT AUSTIN

Running WIEN2K on Ranger
LE><e<:uting WIEN2K in Parallel

Packing up: wien2k_tasks utility script:

o Usage: wien2k_tasks mpisize_lapw0 mpisize_per_k
e mpisize_lapw0: number of machines used by
lapwO_mpi, should be smaller than the total

number of the hosts of the job

o mpisize_per_k: number of machines used by
lapw1_mpi and lapw2_mpi for each k-point, should
be a divisor of the total number of the hosts of the

job

Sample usage in usual SGE script:

!/bin/tcsh
#$ -V

#$ -cwd

#$ -N wien2k

#$ -e err.$JOB_ID
#$ -o out.$JOB_ID
#$ -pe 16way 64

#$ -q development
#$ -1 h_rt=00:05:00
./wien2k_tasks 8 8
runsp_lapw -p -i 1

TACC

12

THE UNIVERSITY OF

TEXAS

AT AUSTIN

Running WIEN2K on Ranger
LE><e<:uting WIEN2K in Parallel

E.g. when -pe 16way 64, the ./wien2k_tasks 8 8 will generate .machines file as

#

granularity:1
lapw0:1115-203 i115-203 i115-203 i115-203 i1115-203 i115-203 i115-203 i115-203:1

1

BB R R R e e

extrafine:1

:1115-203
:1115-203
:1115-301
:1115-301
:1182-103
:1182-103
:1182-203
:1182-203

1115-203
1115-203
i115-301
i115-301
1182-103
1182-103
i182-203
1182-203

i115-203
i115-203
i115-301
i115-301
i182-103
i182-103
1182-203
1182-203

i115-203
i115-203
i115-301
i115-301
i182-103
i182-103
i182-203
i182-203

1115-203 1115-203
1115-203 1115-203
i115-301 i115-301
i115-301 i115-301
1182-103 i1182-103
1182-103 i1182-103
1182-203 1182-203
1182-203 1182-203

i115-203
i115-203
i115-301
i115-301
i182-103
i182-103
i182-203
i182-203

1115-203:
1115-203:
i115-301:
i115-301:
1182-103:
i182-103:
1182-203:
1182-203:

1

e

o Since mpisize_lapw0=8, there are 8 cores used for lapw0_mpi

All 64 cores are used for lapwl_mpi and lapw2_mpi

o Since mpisize_per_k=8, there are % = 8 groups(lines) of cores, each k-point calculation will

be carried out by one group of cores with parallelism boosted by scalapack and fftw_mpi
o Assuming there are 120 k-points, and there are 8 groups, so each one group will compute

1%0 = 15 k-points
o Results will be summed up when all k-point calculations are finished

TACC

13

THE UNIVERSITY OF

TEXAS

AT AUSTIN

Running WIEN2K on Ranger
LE><e<:uting WIEN2K in Parallel

Summary

e The wien2k_tasks mpisize_lapwO mpisize_per_k works
conveniently for users to manage the task geometry of the
coarse and fine grained parallelism in WIEN2K

e The optimal values for mpisize_lapwO mpisize_per_k need to
be figured out by users according to the special calculations
they do. The k-point parallelism should be considered at first
because it is trivially in parallel and the most efficient

e One more thing still under investigation: process affinity when
multiple MPI binaries executed on ONE node.

TACC TEXAS

14 AT AUSTIN

	Introduction
	WIEN2K

	Setting WIEN2K in User's Account
	Executing WIEN2K in Parallel

