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WIEN2K

e Software package for electronic structure calculations of solids
using density functional theory (DFT)

e Based on the full-potential (linearized) augmented plane-wave
(LAPW) + local orbitals (LO) methods

e Written in FORTRAN 90 and requires a UNIX operating
system since the programs are linked together via C-shell
scripts.

o Licensed software, not installed and supported system wide on
TACC systems.
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User’'s Major Requests

e How to setup WIEN2K on Ranger with optimal options ?
e How to execute WIEN2K in parallel ?
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Setting WIEN2K in User’s Account

o Well described in the Part Il of user manual
e Run the siteconfig_lapw script and follow the guided setup
process
— intel compiler and mvapich
— R_LIBS: blas, lapack, fftw
— PR_LIBS: blas, lapack, scalapack, fftw, fftw_mpi
o Run the userconfig_lapw script to setup the proper envs
— Set a path to WIEN2k programs
— Set the stacksize to unlimited

— Set aliases
— Set environment variables ($WIENROOT, $SCRATCH)
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Two Levels of Parallelism

o Coarse grained parallelism: distributes k-points over multiple
task groups by utilizing c-shell scripts, shared file system and
passwordless login. NOT managed by MPI or OpenMP

e Fine grained parallelism: multiple tasks in one group for one
k-point calculation are managed by MPI and execute
scalapack and fftw_mpi operations

e The TACC ibrun command for launching usual MPI
applications does not directly support WIEN2K parallel
execution

e The file named as .machines has to be presented in the
current working directory.
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The Structure of the .machines file

The sample from manual for following system
e 5 computers: alpha, ... epsilon
e epsilon has 4, and delta and gamma 2 cpus
e gamma, delta and epsilon are 3 times faster than alpha and beta

#This is a valid .machines file
#

granularity:1 The layout of the .machines file

1:alpha o A multiple row structure, and three types of the rows

1:beta * Rows started with keyword like granularity and residue: for load
3:gamma:2 delta balancing management

3:delta:1 epsilon:4 o Rows started with a number like 1 and 3: for host management used
residue:delta:2 in lapwl and lapw2

lapw0:gamma:2 delta:2 epsilon:4 * Row started with lapwO0: for host management used in lapw0O

The columns per row for lapwl and lapw2: weight:machine namel:numberl machine name2:number2 ...
o weight is an integer to mark the relative speed of computers
e machine name[1/2/...] specifies the computer names
e number[1/2/...] specifies the number of cpus used on the computers
The load balancing keyword
e granularity enhances load balancing on heterogeneous environments
e residue specify the machine that calculates the residual k-points. Alternatively, remaining k-points can be distributed one by one
over all machines by setting extrafine:1
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On Ranger:

granularity and weight are set to 1 since cores on Ranger nodes are
homogeneous
residue can be ignored since extrafine:1 is more straightforward
number[1/2/...] should be set as 1 since each core is identified as an
individual machine(host)
machine name[1/2/...] shall be organized into the required “matrix”
form: the rows suggest the multiple concurrency for all k-points
calculations; the columns per row suggest the multiple concurrency of
scalapack and fftw_mpi operations for each k-point
The only concern is: the machine names are not known before the
SGE batch started.
— A utility script is needed and used in job script to generate the
.machines file in fly
— This script should group the tasks according to users’ inputs: the
number of rows/columns in.machines file
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Hosts in a SGE batch

o -pe TpNway NoNx16: job will be executed using the specified number of tasks (cores to
use) per node ("wayness") and the number of nodes times 16 (total number of cores).

o $PE_HOSTFILE will be created according to NoN, e.g.-pe 4way 32

i115-303.ranger.tacc
1182-102.ranger.tacc
e Accounting the TpN, the

i115-303
i115-303
i115-303
i115-303
i182-102
i182-102
i182-102
i182-102

.ranger.
.ranger.
.ranger
.ranger.
.ranger.
.ranger.
.ranger.
.ranger.
e This is what ibrun command does to prepare hostfile for usual MPI jobs

tacc
tacc

.tacc

tacc
tacc
tacc
tacc
tacc

.utexas.
.utexas.
host list will be saved into $hostfile_tacc
.utexas
.utexas
.utexas
.utexas
.utexas
.utexas
.utexas
.utexas

edu
edu

.edu
.edu
.edu
.edu
.edu
.edu
.edu
.edu
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Constructing .machine from $hostfile tacc, e.g. for lapwl and lapw2 parts:

set proclist=‘cat $hostfile_tacc’

set nproc=‘cat hostfile_tacc | wc -1°
set i=1

while ($i <= $nproc )

echo -n ’1:’ >>.machines

@ il = $i + $mpisize_per_k

@ i2 = $i1 - 1

echo $proclist[$i-$i2] ’:1° >>.machines
set i=8§il

end

echo ’granularity:1’ >>.machines
echo ’extrafine:1’ >>.machines
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Or more efficiently, just one awk statement to replace the while loop
e Rows for lapwl and lapw2:
awk -v div=mpisize_per_k ’{_=int(NR/(div+1.0e-10))} {al_l=((al_1)7al_]FS:x)$1;
1=(_>1)7_:1}END{for(i=0;i<=1;++i)print "1:"a[i]":1"}’
$hostfile_tacc >>.machines
® Row lapw0
awk -v div=mpisize_lapwO ’{_=int(NR/(div+1.0e-10))} {al_l1=((al_1)7al_1FS:x)$1;
1=(_>1)7_:1}END{for(i=0;i<=0;++i)print "lapwO:"a[i]":1"}’
$hostfile_tacc >>.machines
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Packing up: wien2k_tasks utility script:

o Usage: wien2k_tasks mpisize_lapw0 mpisize_per_k
e mpisize_lapw0: number of machines used by
lapwO_mpi, should be smaller than the total

number of the hosts of the job

o mpisize_per_k: number of machines used by
lapw1_mpi and lapw2_mpi for each k-point, should
be a divisor of the total number of the hosts of the

job

Sample usage in usual SGE script:

!/bin/tcsh
#$ -V

#$ -cwd

#$ -N wien2k

#$ -e err.$JOB_ID
#$ -o out.$JOB_ID
#$ -pe 16way 64

#$ -q development
#$ -1 h_rt=00:05:00
./wien2k_tasks 8 8
runsp_lapw -p -i 1

TACC

12

THE UNIVERSITY OF

TEXAS

AT AUSTIN



Running WIEN2K on Ranger
LE><e<:uting WIEN2K in Parallel

E.g. when -pe 16way 64, the ./wien2k_tasks 8 8 will generate .machines file as

#

granularity:1
lapw0:1115-203 i115-203 i115-203 i115-203 i1115-203 i115-203 i115-203 i115-203:1

1

BB R R R e e

extrafine:1

:1115-203
:1115-203
:1115-301
:1115-301
:1182-103
:1182-103
:1182-203
:1182-203

1115-203
1115-203
i115-301
i115-301
1182-103
1182-103
i182-203
1182-203

i115-203
i115-203
i115-301
i115-301
i182-103
i182-103
1182-203
1182-203

i115-203
i115-203
i115-301
i115-301
i182-103
i182-103
i182-203
i182-203

1115-203 1115-203
1115-203 1115-203
i115-301 i115-301
i115-301 i115-301
1182-103 i1182-103
1182-103 i1182-103
1182-203 1182-203
1182-203 1182-203

i115-203
i115-203
i115-301
i115-301
i182-103
i182-103
i182-203
i182-203

1115-203:
1115-203:
i115-301:
i115-301:
1182-103:
i182-103:
1182-203:
1182-203:

1

e

o Since mpisize_lapw0=8, there are 8 cores used for lapw0_mpi

All 64 cores are used for lapwl_mpi and lapw2_mpi

o Since mpisize_per_k=8, there are % = 8 groups(lines) of cores, each k-point calculation will

be carried out by one group of cores with parallelism boosted by scalapack and fftw_mpi
o Assuming there are 120 k-points, and there are 8 groups, so each one group will compute

1%0 = 15 k-points
o Results will be summed up when all k-point calculations are finished
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Summary

e The wien2k_tasks mpisize_lapwO mpisize_per_k works
conveniently for users to manage the task geometry of the
coarse and fine grained parallelism in WIEN2K

e The optimal values for mpisize_lapwO mpisize_per_k need to
be figured out by users according to the special calculations
they do. The k-point parallelism should be considered at first
because it is trivially in parallel and the most efficient

e One more thing still under investigation: process affinity when
multiple MPI binaries executed on ONE node.
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