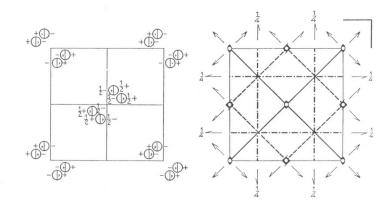


 $P4_{2}/mnm$ D_{4h}^{14}

No. 136


 $P 4_2/m 2_1/n 2/m$

Structure given by:

spacegroup lattice parameter positions of atoms (basis)

Rutile TiO₂:

 $P4_{2}/mnm$ (136) a=8.68, c=5.59 bohr Ti: (0,0,0) 0: (0.304,0.304,0)

Origin at centre (mmm)

Number of positions, Wyckoff notation, and point symmetry

k

16

8

8

8

h

d

С

4

 $b mmm = 0, 0, \frac{1}{2}; \frac{1}{2}, \frac{1}{2}, 0.$ a mmm 0,0,0; $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$.

Co-ordinates of equivalent positions

1 $x, y, z; \bar{x}, \bar{y}, z; \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z; \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z;$

 $x, y, \overline{z}; \quad \overline{x}, \overline{y}, \overline{z}; \quad \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z; \quad \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z;$

 $y,x,z; \quad \bar{y},\bar{x},z; \quad \frac{1}{2}+y,\frac{1}{2}-x,\frac{1}{2}+z; \quad \frac{1}{2}-y,\frac{1}{2}+x,\frac{1}{2}+z;$

 $y, x, \overline{z}; \quad \overline{y}, \overline{x}, \overline{z}; \quad \frac{1}{2} + y, \frac{1}{2} - x, \frac{1}{2} - z; \quad \frac{1}{2} - y, \frac{1}{2} + x, \frac{1}{2} - z.$

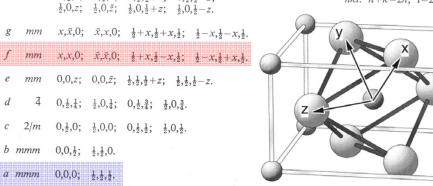
 $m = x, x, z; \quad \bar{x}, \bar{x}, z; \quad \frac{1}{2} + x, \frac{1}{2} - x, \frac{1}{2} + z; \quad \frac{1}{2} - x, \frac{1}{2} + x, \frac{1}{2} + z;$ $x, x, \overline{z}; \quad \overline{x}, \overline{x}, \overline{z}; \quad \frac{1}{2} + x, \frac{1}{2} - x, \frac{1}{2} - z; \quad \frac{1}{2} - x, \frac{1}{2} + x, \frac{1}{2} - z.$

 $y,x,0; \ \bar{y},\bar{x},0; \ \frac{1}{2}+y,\frac{1}{2}-x,\frac{1}{2}; \ \frac{1}{2}-y,\frac{1}{2}+x,\frac{1}{2}$

 $m \quad x,y,0; \quad \bar{x},\bar{y},0; \quad \frac{1}{2}+x,\frac{1}{2}-y,\frac{1}{2}; \quad \frac{1}{2}-x,\frac{1}{2}+y,\frac{1}{2};$

2 $0, \frac{1}{2}, z; 0, \frac{1}{2}, \overline{z}; 0, \frac{1}{2}, \frac{1}{2} + z; 0, \frac{1}{2}, \frac{1}{2} - z;$

Conditions limiting possible reflections


General:

hkl: No conditions hk0: No conditions 0kl: k+l=2nhhl: No conditions

Special: as above, plus

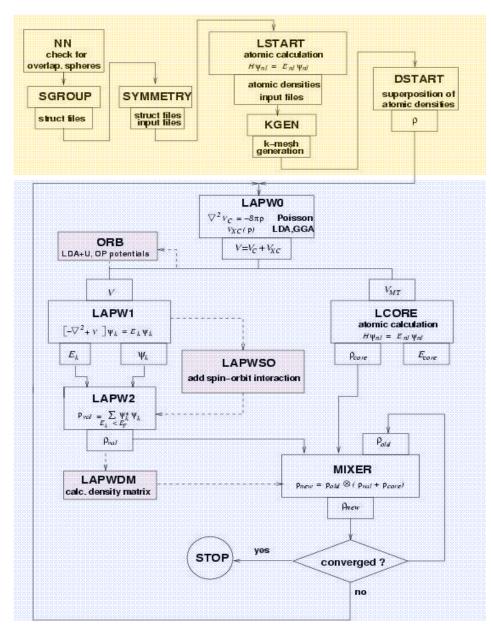
no extra conditions

hkl: h+k=2n; l=2n

Specify:

- Number of nonequivalent atoms
- Iattice type (P, F, B, H, CXY, CXZ, CYZ) or spacegroup symbol
 - if existing, you must use a SG-setting with inversion symmetry:
 - Si: ±(1/8,1/8,1/8), not (0,0,0)+(1/4,1/4,1/4)!
- lattice parameters a,b,c (in Å or bohr)
- name of atoms (Si) and fractional coordinates (position)
 - as numbers (0.123); fractions (1/3); simple expressions (x-1/2,...)
 - in fcc (bcc) specify just one atom, not the others in (1/2,1/2,0; ...)
- "save structure "
 - updates automatically Z, r0, equivalent positions
- set RMT and continue": (specify proper "reduction" of NN-distances)
 - non-overlapping "as large as possible" (saves time), but not larger than 2.5 bohr
 - RMT for sp (d) elements 10-20 % smaller than for d (f) elements
 - largest spheres not more than 50 % larger than smallest sphere
 - Exception: H in C-H or O-H bonds: RMT~0.6 bohr (RKMAX~3-4)
 - Do not change RMT in a *"series*" of calculations, RMT equal for same atoms
- "save structure save+cleanup"

Program structure of WIEN2k



init_lapw

- step-by-step or batch initialization
- symmetry detection (F, I, Ccentering, inversion)
- input generation with recommended defaults
- quality (and computing time) depends on k-mesh and R.Kmax (determines #PW)

run_lapw

- scf-cycle
- optional with SO and/or LDA+U
- different convergence criteria (energy, charge, forces)
- save_lapw tic_gga_100k_rk7_vol0
 - cp case.struct and clmsum files,
 - mv case.scf file
 - rm case.broyd* files

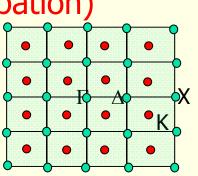
 \blacksquare The convergence criterion in APW is the product of $R_{\rm MT}.Kmax$

RKMAX

$$\Psi = \sum_{K_n}^{KMAX} c_{K_n} e^{iK_n r}$$

- <u>http://www.wien2k.at/reg_user/faq/rkmax.html</u>
- medium quality convergence for smallest atom:
- basis set scales with RKmax³
- cputime scales with N_{PW}³
- increasing Rkmax by 10 %
 → doubles cputime
- **Rkmax** Element 3.0 Н 4.5 Ιi 5.0 Be, B, Si 5.5 С, Р 6.0 N, S 6.5 O, Cl, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Al 7.0 F 7.5 Sc-Cr, Ga-Br, Y-Mo Mn-Zn, Ru-Cd, In-I, La, Ce, Hf-Re 8.0 Os-At, Pr-Lu, Ac-Lr 8.5

START with SMALL Rkmax (relaxation), increase/test later



- Replace the "integral" of the BZ by a finite summation on a mesh of "k-points" $\rho(r) = \sum_{n}^{E_n < E_F} \int \psi_{k,n}^* \psi_{k,n} d^3k = \sum_{k,n} w_{k,n} \psi_k^* \psi_k$
- weights $w_{k,n}$ depend on k and bandindex n (occupation)
 - for full "bands" the weight is given by "symmetry"
 - w(Γ)=1, w(x)=2, w(∆)=4, w(k)=8

shifted "Monkhorst-Pack" mesh

- for partially filled bands (metals) one must find the Fermi-energy (integration up to NE) and determine the weights for each state E_{k,n}
 - Inear tetrahedron method (TETRA, eval=999)
 - Inear tetrahedron method + "Bloechl" corrections (TETRA)
 - "broadening methods"
 - gauss-broadening (GAUSS 0.005)
 - temperature broadening (TEMP/TEMPS 0.005)
- broadening useful to damp scf oszillations, but dangerous (magnetic moment)

X kgen (generates k-mesh and reduces to irreducible wedge using symmetry)

- automatically "adds inversion"
 - time inversion holds and E(k) = E(-k)
 - except in magnetic spin-orbit calculations (x -so kgen; uses case.ksym file)
 - x -fbz kgen (generates "full mesh" in BZ)
- always "shift" the mesh for scf-cycle
 - gaps often at Γ ! (might not be in your mesh)
- small unit cells and metals require large k-mesh (1000-100000)
- Iarge unit cells and insulators need only 1-10 k-points
- use at first a fairly coarse mesh for scf/relaxations
- continue later with finer mesh
 - mesh was good if nothing changes and scf terminates after few (3) iterations
- use even finer meshes for DOS, spectra, optics,...

All programs are executed via the "master" shell-script x_lapw x lapw2 –up –orb

- This generates a "def" file: lapw2.def
 - 5,'tin.in2c', 'old', 'formatted'
 - 6, 'tin.output2up', 'unknown', 'formatted'
 - 8, 'tin.clmvalup', 'unknown', 'formatted'
 - 10, './tin.vectorup', 'unknown', 'unformatted'
- and executes: lapw2c lapw2.def
- All WIEN2k-shell scripts have long and short names:
 - x_lapw; runsp_lapw, runfsm_lapw → x; runsp; runfsm
- All scripts have a "help" switch "-h", which explains flags and options (without actually execution)
 - x -h x lapw1 -h

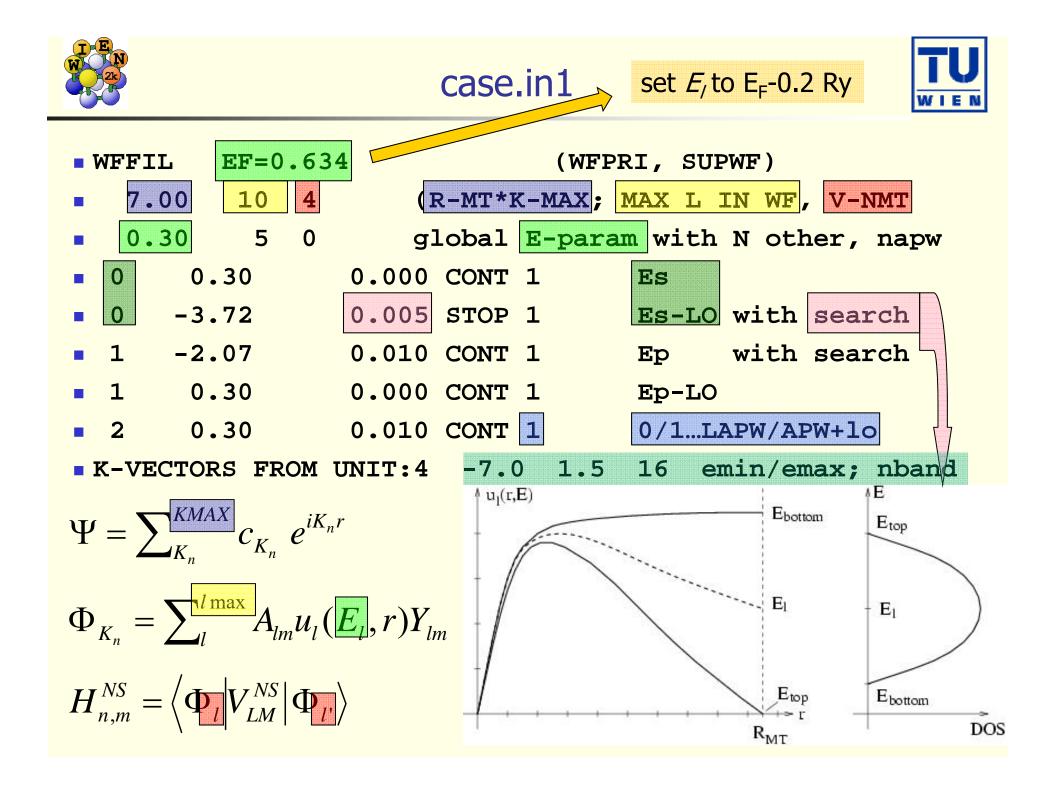
run_lapw [options]	(for nonmagnetic cases)
<i>-ec 0.0001</i>	convergence of total energy (Ry)
<i>-cc 0.0001</i>	convergence of charge distance (e ⁻)
<i>-fc 1.0</i>	convergence of forces (mRy/bohr)
-it (-it1,-it2, -noHinv)	iterative diagonalization (large speedup)
■ - <i>p</i>	parallel calculation (needs .machines file)
■ <i>-SO</i>	add spin-orbit (only after "init_so")
 Spacegroups without inversion 	use automatically lapw1c, lapw2c (case.in1c,in2c)

• case.scf: master output file, contains history of the scf-cycle

most information is stored with some "labels" (grep :label case.scf)

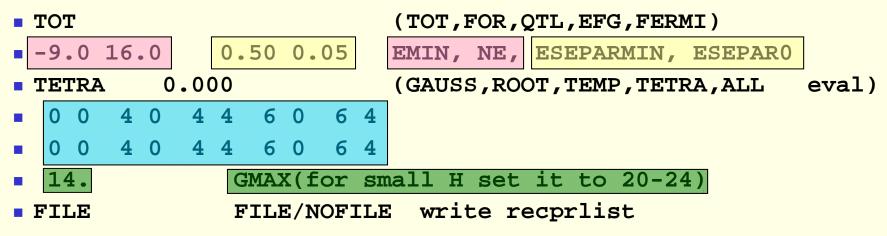
- :ENE :	DIS :FI	ER :GAP :CTO	001 :NTC	0001	:QTL001
• :FOR002:	2.ATOM	19.470	0.000	0.000	19.470
• :FGL002:	2.ATOM	13.767	13.767	0.000	total forces
• :LAT :	VOL :P	OSxxx			

Getting help


- *_lapw -h "help switch" of all WIEN2k-scripts
- help_lapw:
 - opens usersguide.pdf; Use ^f keyword to search for an item ("index")
- html-version of the UG: (\$WIENROOT/SRC_usersguide/usersguide.html)
- <u>http://www.wien2k.at/reg_user</u>
 - FAQ page with answers to common questions
 - Update information: When you think the program has an error, please check newest version
 - Textbook section: DFT and the family of LAPW methods by S.Cottenier
 - Mailing-list:
 - subscribe to the list (always use the same email)
 - full text search of the "digest" (your questions may have been answered before)
 - posting questions: Provide sufficient information, locate your problem (case.dayfile, *.error, case.scf, case.outputX).
 - "My calculation crashed. Please help." This will most likely not be answered.

"QTL-B" value too large - STOP (or :WARN): "ghostbands"

- identify for which eigenvalue, atom and l it happens, check E_F (case.scf2, case.output2)
- *identify the corresponding linearization energies in case.scf1*
- change the corresponding linearization energy in case.in1
 - compare and check with :EPL and :EPH lines in case.scf2
 - default E-parameters are adapted automatically but may need changes for
 - surfaces, molecules (negative EF) or heavy elements (EF often larger than 1.0)
 - add a local orbital (or adjust its energy)
- *if QTL-B occurs for an atom with large RMT, reduce RMT*
 - this may happen for larger RKMAX ("numerical linear dependency")
- scf-cycle diverges (grep :DIS case.scf):
 - check structure (most likely a wrong structure caused divergence);
 - reduce mixing in case.inm slightly; rm *.broyd* case.scf; x dstart
 - check E-parameters (see above), check :NEC01 (correct number of e⁻)

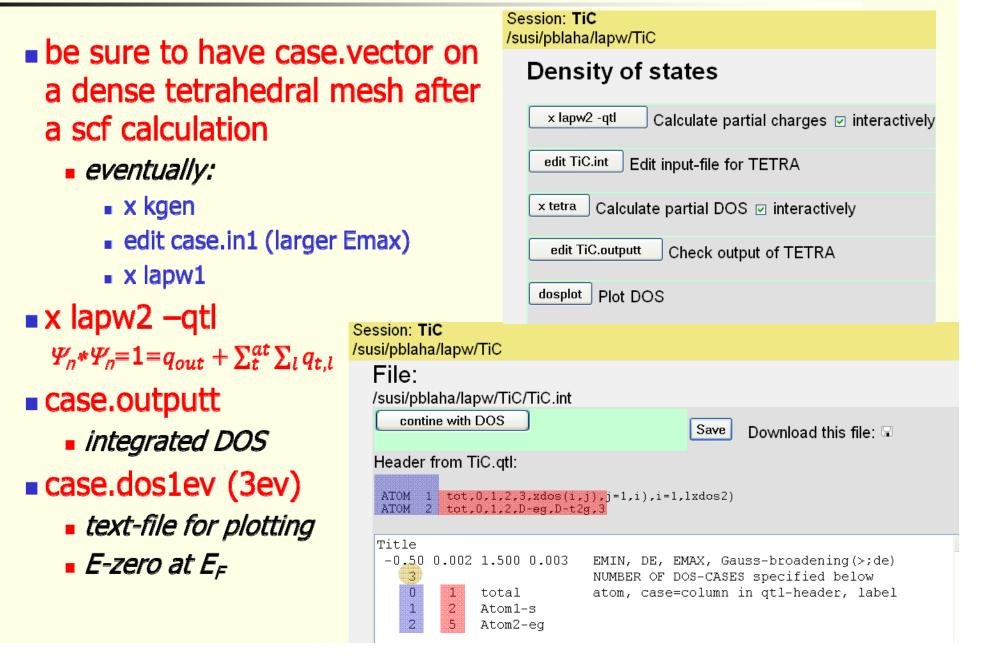


case.klist, case.in2

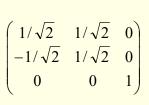
GAMMA	0	0	0	40	1.0	IX, IY, IZ, IDIV, WEIGHT
 • 	1	0	0	40	6.0	
• • • •						
• X	40	0	0	40	3.0	
END						

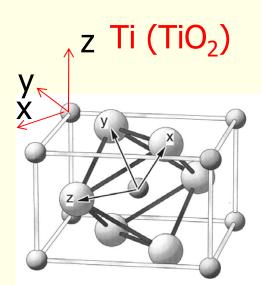
case.in2:

 $\rho(r) = \sum_{LM} \rho_{LM}(r) Y_{LM}(\hat{r}) \qquad \rho(r) = \sum_{LM} \rho_{G} e^{iGr}$



- Energy bands
 - classification of irreducible representations
 - ´character-plot´ (emphasize a certain band-character)
- Density of states
 - including partial DOS with I and m- character (eg. p_x , p_y , p_z)
- Electron density, potential
 - total-, valence-, difference-, spin-densities, ρ of selected states
 - 1-D, 2D- and 3D-plots (Xcrysden)
 - X-ray structure factors
 - Bader 's atom-in-molecule analysis, critical-points, atomic basins and charges ($\nabla \rho . \vec{n} = 0$)
 - spin+orbital magnetic moments (spin-orbit / LDA+U)
- Hyperfine parameters
 - hyperfine fields (contact + dipolar + orbital contribution)
 - Isomer shift
 - Electric field gradients

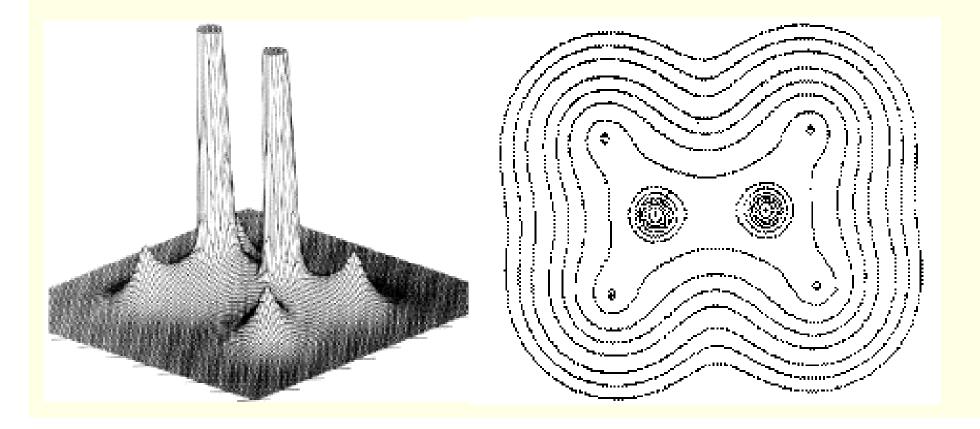



partial charges:

Iocal rotation matrix:

- transfers z (y) into highest symmetry
- reduces terms in LM series
- "chemical" interpretation
 - p_x is different from p_y

- see case.struct and case.outputs
- **x** qtl (instead of x lapw2 -qtl)
 - **f-**orbitals
 - *qtls for* **different coordinate system** (eg."octahedral" in TiO₂)
 - relativistic basis ($p_{1/2}$ - $p_{3/2}$ or $d_{3/2}$ - $d_{5/2}$ splitting in so calculation)
 - for angular dependend TELNES (ISPLIT 88, 99)


- Energy bands
 - classification of irreducible representations
 - ´character-plot´ (emphasize a certain band-character)
- Density of states
 - including partial DOS with I and m- character (eg. p_x , p_y , p_z)
- Electron density, potential
 - total-, valence-, difference-, spin-densities, ρ of selected states
 - 1-D, 2D- and 3D-plots (Xcrysden)
 - X-ray structure factors
 - Bader 's atom-in-molecule analysis, critical-points, atomic basins and charges $(\nabla \rho. \vec{n} = 0)$
 - spin+orbital magnetic moments (spin-orbit / LDA+U)
- Hyperfine parameters
 - hyperfine fields (contact + dipolar + orbital contribution)
 - Isomer shift
 - Electric field gradients
 - NMR chemical shifts

Theory to characterize atoms and chemical bonds from the topology of the electron density, by R.F.Bader (http://www.chemistry.mcmaster.ca/faculty/bader/aim/aim_0.html)

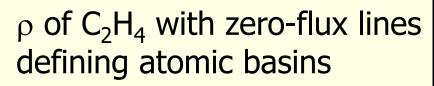
Electron density of C₂H₄

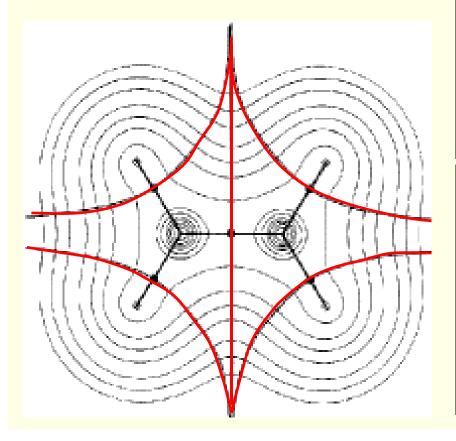
AIM-II

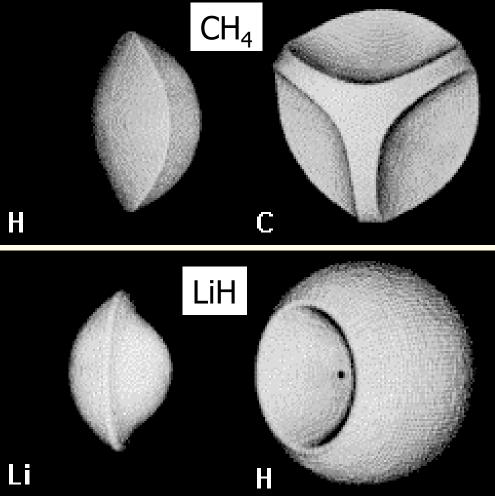
Bonds are characterized by "critical points", where $\nabla \rho = 0$

density maximum: (3,-3); 3 negative curvatures λ, (at nucleus or non-NM)
bond CP: (3,-1): 2 negative, 1 positive λ (saddle point)
opositive (and large) Laplacian: ionic bond
onegative Laplacian: covalent bond
bridge CP: (3,1)
cage CP: (3,3) (minimum)

(3,-1) BCP


trajectories of constant $\nabla \rho$ originating at CPs in C₂H₄




AIM-III

• "Atoms" are regions within a zero-flux surface $\vec{\nabla} \rho \cdot \vec{n} = 0$

AIM-IV

example of BN/Ni with "difference" to free atoms,workfunction shift

Bader analysis of some inorganic compounds:

	ρ (e/A ³)	Δρ (e/A 5)	Q (e)	
Cl ₂	1.12	-6.1	-	Cl ₂ more covalent
I ₂	0.48	-0.9	-	then I ₂
TiC	0.51	1.8	1.7	
TiN	0.47	3.9	1.7	
TiO	0.43	5.8	1.5	more ionic, but less charge?
KCI	0.08	1.2	0.6	less ionic then TiC ?

x aim

You must have a "good" scf-density (case.clmsum)
no core leakage, LMs up to L=8-10 in case.in2

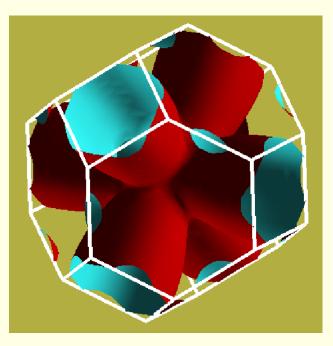
1 20 0.0 1.570796327 20 0.0 0.785398163 0.07 1.0 4	, , , , , , , , , , , , , , , , , , , ,
1.65 0.1 3 3 3	initial R for search, step (a.u) nshell
IRHO WEIT	"INTEGRATE" rho WEIT (surface weights are available in case.surf)
30 END	30 radial points outside min(RMIN,RMT)
CRIT 1 ALL 3 3 3 END	atom around you search for critical points two, three, four, all (dimers,trimers,all=2+3) nshell
extractaim lanw.	critical points and (converted units)

extractaim_lapw: \rightarrow critical_points_ang (converted units) :PC x, y, z, λ_1 , λ_2 , λ_3 , ch, laplacian, rho

Total energy and forces

- optimization of internal coordinates, (MD, BROYDEN)
- cell parameter only via E_{tot} (no stress tensor)
- elastic constants for cubic, hexagonal, and tetragonal cells
- Phonons via supercells
 - interface to PHONON (K.Parlinski) bands, DOS, thermodynamics, neutrons
 - interface to PHONOPY (A. Togo)
 - http://www.wien2k.at/reg_user/unsupported

Spectroscopy


- core level shifts
- X-ray emission, absorption, electron-energy-loss (with core holes)
 - core-valence/conduction bands including matrix elements and angular dep.
- optical properties (dielectric function in RPA approximation, JDOS including momentum matrix elements and Kramers-Kronig)
- fermi surface: 2D, 3D (using XcrysDen)

• xcrysden --wien_fermisurface tin.struct

- choose a good k-mesh (eg. 10000 points)
- plot the FS for all bands which cross E_F and compare to band structure

- for 2D plots there is also a WIEN2k-tool "fsgen" (see UG)
- SKEAF (<u>www.wien2k.at/reg_users/unsupported</u>): quantum oszillations