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Outline of the talk

◮ Introduction to the DFT-(g)KS method
◮ (Semi)local functionals:

◮ LDA
◮ GGA
◮ MGGA
◮ Libxc

◮ Methods for van der Waals systems:
◮ Atom-pairwise methods (e.g., DFT-D3)
◮ Nonlocal functionals

◮ Potentials for band gaps:
◮ (Local) modified Becke-Johnson
◮ GLLB-SC

◮ On-site methods for strongly correlated d and f electrons:
◮ DFT+U
◮ On-site hybrid functionals

◮ Hybrid functionals
◮ Recommendations
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Total energy in Kohn-Sham DFT1

Etot =
1

2

∑

i

∫

|∇ψi(r)|
2 d3r

︸ ︷︷ ︸

Ts

+
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
d3rd3r′

︸ ︷︷ ︸

Eee

+

∫

ven(r)ρ(r)d
3r

︸ ︷︷ ︸

Een

+
1

2

∑

A,B
A6=B

ZAZB
|RA − RB |

︸ ︷︷ ︸

Enn

+Exc

◮ Ts : kinetic energy of the non-interacting electrons
◮ Eee : repulsive electron-electron electrostatic Coulomb energy
◮ Een : attractive electron-nucleus electrostatic Coulomb energy
◮ Enn : repulsive nucleus-nucleus electrostatic Coulomb energy
◮ Exc = Ex + Ec : exchange (x) and correlation (c) energy

Approximations for Exc have to be used in practice.

The reliability of the results depends mainly on Exc

1
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
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Approximations for Exc (Jacob’s ladder1)

Exc =

∫

ǫxc (r) d
3
r

The XC energy density ǫxc depends on various quantities (electron density ρ =
∑

i

|ψi|
2

, kinetic-energy density τ =
1

2

∑

i

|∇ψi|
2

)

When climbing up Jacob’s ladder, the functionals are more and more

◮ accurate (in principle)
◮ mathematically sophisticated (complicated formulas)
◮ difficult to implement
◮ expensive to evaluate (time and memory)

1
J. P. Perdew et al., J. Chem. Phys. 123, 062201 (2005)
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(Generalized) Kohn-Sham Schrödinger equations

Minimization of Etot leads to
(

−
1

2
∇2 + vee(r) + ven(r) + v̂xc(r)

)

ψi(r) = ǫiψi(r)

Two types of exchange-correlation potentials v̂xc:

◮ Multiplicative (1st and 2nd rungs): v̂xc = δExc/δρ = vxc (KS1), simple to calculate and

implement.

◮ LDA
◮ GGA

◮ Non-multiplicative (3rd and higher rungs): v̂xc = (1/ψi)δExc/δψ
∗
i = vxc,i (generalized

KS2), more complicated implementation.

◮ MGGA
◮ Hartree-Fock
◮ Hybrid (mixing of GGA and Hartree-Fock)
◮ LDA+U
◮ Self-interaction corrected (Perdew-Zunger)

1
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

2
A. Seidl et al., Phys. Rev. B 53, 3764 (1996)
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Local density approximation (LDA)

◮ LDA is the first and most simple approximation for the XC energy.1

◮ The XC energy density is a function depending solely on the electron
density.
◮ Non-spin-polarized case:

ǫLDA

xc (r) = f(ρ(r))

◮ Spin-polarized case:

ǫLDA

xc (r) = f(ρ↑(r), ρ↓(r))

◮ The LDA was used until the beginning of the 90s, especially in solid-state

physics. It has never really been used in chemistry.
◮ The accuracy of LDA is in general quite bad.

1
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
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Semilocal functionals: GGA

◮ The first GGA functionals are from the mid 80s.1

◮ They are usually expressed as

ǫGGA

xc (ρ,∇ρ) = ǫLDA

x (ρ)Fxc(rs, s)

where Fxc is the enhancement factor and

rs =
1

(
4

3
πρ

)1/3
(Wigner-Seitz radius, related to ρ)

s =
|∇ρ|

2 (3π2)
1/3

ρ4/3
(reduced density gradient, related to ∇ρ)

◮ Generally improve over LDA.

1
J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986); A. D. Becke, J. Chem Phys. 84, 4524 (1986)
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GGA: Comparison of enhancement factors

Fxc(r) =
ǫGGA

xc (r)

ǫLDA
x (r)

=
ǫGGA

x (r) + ǫGGA
c (r)

ǫLDA
x (r)

=
ǫGGA

x (r)

ǫLDA
x (r)

︸ ︷︷ ︸

Fx(r)

+
ǫGGA

c (r)

ǫLDA
x (r)

︸ ︷︷ ︸

Fc(r)

= Fx(r) + Fc(r)

Fx corrects for the too small magnitude of LDA exchange Fc corrects for the too large magnitude of LDA correlation
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GGA: The historical success for solid iron (1990)

◮ From experiment the ground state of Fe is known to be bcc ferromagnetic
◮ LDA wrongly gives fcc nonmagnetic as the ground state
◮ GGA (e.g. PW91 or PBE) provides the correct answer1

wrong correct

1
B. Barbiellini, E. G. Moroni, and T. Jarlborg, J. Phys.: Condens. Matter 2, 7597 (1990)
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Illustration of the limit of GGA

Mean absolute error for molecular properties1

Atomization energya Barrier heightb

LDA 83.7 15.4

PBEsol (worst GGA) 58.8 11.5

PBE 22.2 9.2

BLYP (best GGA) 9.5 7.9
a223 molecules. Values in kcal/mol.

b76 chemical reactions. Values in kcal/mol.

Mean absolute error for solid-state properties2

Lattice constanta Bulk modulusb

LDA 0.071 11.5

PBEsol (best GGA) 0.030 7.8

PBE 0.061 12.2

BLYP (worst GGA) 0.120 25.2
a44 solids. Values in Å.

b44 solids. Values in GPa.

No GGA exists that is good for molecular properties and solid-state properties at the same time

1
J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)

2
F. Tran, J. Stelzl, and P. Blaha, J. Chem. Phys. 144, 204120 (2016)
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Semilocal functionals: MGGA

◮ Started to appear in the mid 90s3:
◮ Dependency on the kinetic-energy density τ = 1

2

∑

i |∇ψi|
2
:

ǫMGGA

xc (ρ,∇ρ, τ) = ǫLDA

x (ρ)Fxc(rs, s, α)

◮ α = τ−τW
τTF

◮ α = 1 (region of constant electron density)
◮ α ≈ 0 (in one- and two-electron regions very close and very far from nuclei)
◮ α≫ 1 (region between closed shell atoms)

◮ Thanks to their dependency on τ , MGGA functionals are more flexible than GGAs
◮ Example: SCAN1 is currently the most used MGGA

◮ as good as the best GGA for the atomization energy of molecules
◮ as good as the best GGA for the lattice constant of solids

3
T. Van Voorhis and G. E. Scuseria, J. Chem. Phys. 109, 400 (1998)

1
J. Sun et al., Phys. Rev. Lett. 115, 036402 (2015)
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MGGA functionals: more broadly accurate than GGA

Mean absolute error for molecular properties1

Atomization energya Barrier heightb

LDA 83.7 15.4

PBEsol (worst GGA) 58.8 11.5

PBE 22.2 9.2

BLYP (best GGA) 9.5 7.9

SCAN 5.7 7.7
a223 molecules. Values in kcal/mol.

b76 chemical reactions. Values in kcal/mol.

Mean absolute error for solid-state properties2

Lattice constanta Bulk modulusb

LDA 0.071 11.5

PBEsol (best GGA) 0.030 7.8

PBE 0.061 12.2

BLYP (worst GGA) 0.120 25.2

SCAN 0.030 7.4
a44 solids. Values in Å.

b44 solids. Values in GPa.

MGGA can be good for molecular properties and solid-state properties at the same time

1
J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)

2
F. Tran, J. Stelzl, and P. Blaha, J. Chem. Phys. 144, 204120 (2016)
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MGGA functionals: Lattice constant, cohesive energy and band gap

◮ Can a MGGA functional be accurate for the lattice constant, cohesive energy and band gap?
◮ We recently tried to answer this question by training the following exchange functional form1

Fx =

∑N
i=0

∑N−i
j=0 cijp

itj

∑N
i=0

∑N−i
j=0 dijpitj

(

p ∝ |∇ρ|2
ρ8/3

, t ∝ τ

ρ5/3

)

◮ N = 2 was chosen, leading to 11 independent empirical parameters cij and dij . SCAN for correlation.
◮ mGGA23 and mGGA23’ have well-balanced accuracy:

Lattice constanta Cohesive energyb Band gapc

PBE 0.06 0.19 1.10

SCAN 0.03 0.19 0.76

mGGA23 0.03 0.22 0.63

mGGA23’ 0.06 0.36 0.54

TASK2 0.23 1.34 0.54
a44 solids. Values in Å.

b44 solids. Values in eV/atom.

c440 solids. Values in eV.

It is possible to construct a MGGA that is reasonably accurate for the three properties

1
P. Kovács, F. Tran, P. Blaha, and G. K. H. Madsen, J. Chem. Phys. 157, 094110 (2022)

2
T. Aschebrock and S. Kümmel, Phys. Rev. Res. 1, 033082 (2019)
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Libxc: a library of exchange-correlation and kinetic energy functionals1

◮ External library of basically all existing semilocal (LDA, GGA and MGGA) functionals

◮ Number of exchange-correlation functionals in Libxc version 6.2.2 (latest version):

◮ LDA: 65
◮ GGA: 315
◮ MGGA: 210

◮ Calculates the XC energy density and derivatives
◮ Written in C, but with Fortran and Python bindings
◮ Supported by 41 DFT codes (WIEN2k is among them)
◮ Installation in WIEN2k: LIBXCROOT (in the Makefile in SRC lapw0) is the path to the

Libxc installation

1
M. A. L. Marques et al., Comput. Phys. Commun. 183, 2272 (2012); S. Lehtola et al., SoftwareX 7, 1 (2018);

https://libxc.gitlab.io
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Some facts about GGA and MGGA functionals

◮ About 300 GGA and 200 MGGA functionals exist.1 This is a real jungle!

◮ They can be divided into two categories:

◮ Empirical: parameters fitted to accurate (i.e., experimental) data
◮ Ab initio (i.e., from first-principles): all parameters were determined such

that known mathematical conditions are obeyed (e.g., PBE or SCAN)

◮ Computational speed:

◮ GGA is barely slower than LDA
◮ MGGA is slower than GGA, but moderately
◮ It may be more difficult to achieve self-consistency with MGGA
◮ LDA, GGA and MGGA are clearly (much) faster than more advanced

methods like hybrid or GW

◮ GGA and MGGA are widely used for total energy calculation (i.e., geometry), especially in

solid-state physics

1
https://libxc.gitlab.io/functionals
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Input file case.in0: keywords for the xc-functional

The functional is specified at the 1st line of case.in0. Three different ways:

1. Specify a global keyword for Ex, Ec, vx, vc:
◮ TOT XC NAME

2. Specify a keyword for Ex, Ec, vx, vc individually:
◮ TOT EX NAME1 EC NAME2 VX NAME3 VC NAME4

3. Specify keywords to use functionals from Libxc:
◮ TOT XC TYPE X NAME1 XC TYPE C NAME2

◮ TOT XC TYPE XC NAME

where TYPE is the family name: LDA, GGA or MGGA
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Input file case.in0: examples

◮ PBE:

TOT XC PBE

or

TOT EX PBE EC PBE VX PBE VC PBE

or (Libxc keyword)

TOT XC GGA X PBE XC GGA C PBE

◮ MGGA MS2:

TOT XC MGGA MS 0.504 0.14601 4.0
︸ ︷︷ ︸

κ,c,b

All available functionals are listed in tables of the user’s guide and in

$WIENROOT/SRC lapw0/xc funcs.h (or on the Libxc website1) for Libxc

1
https://libxc.gitlab.io/functionals
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van der Waals systems

A system (dimer, molecular complex, solid) is called a van der Waals system if the cohesion

is essentially due to weak interactions (e.g., dispersion) and not by covalent or ionic bonds.

◮ van der Waals bonds are much weaker (∼ 10−5 − 30 kcal/mol) than covalent or ionic bonds

(∼ 50− 250 kcal/mol)
◮ van der Waals interactions are of several types: Pauli repulsion (repulsive), electrostatic (attractive or

repulsive), induction (attractive), dispersion (attractive and always present)

water dimer

binding energy ∼ 4 kcal/mol

benzene crystal

lattice energy ∼ 10 kcal/mol

graphite

interlayer binding energy ∼ 1 kcal/mol/atom

The semilocal and hybrid functionals do not account for the dispersion forces =⇒ these

approximations are very unreliable for van der Waals systems. This was one of the most

important problems in DFT until the middle of the 2000s.
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Approximations for Exc specific for van der Waals systems

The solution to remedy the problem of semilocal/hybrid methods for van der Waals is to add a term that is

specific (∼ contains the physics) for the dispersion interactions:

Exc = E
semilocal/hybrid
xc + Ec,disp

Two types of dispersion terms have been proposed:

◮ Atom-pairwise (computationally cheap)1:

EPW
c,disp = −

∑

A<B

∑

n=6,8,10,...

fdamp
n (RAB)

CABn
RnAB

RAB is the distance between atoms A and B, CABn are dispersion coefficients and f
damp
n is a damping

function that prevents too large values of the energy when RAB → 0.
◮ Nonlocal (slightly expensive because of the double integral)2:

ENL
c,disp =

1

2

∫ ∫

ρ(r)Φ
(
r, r′

)
ρ(r′)d3rd3r′

Φ is a kernel which depends on ρ, ∇ρ and |r− r
′|.

1
S. Grimme, J. Comput. Chem. 25, 1463 (2004)

2
M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)
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DFT-D3: the most popular atom-pairwise method1

◮ Features:
◮ Computationally cheap. Add little time.
◮ CAB

n depend on positions of the nuclei (via coordination number)
◮ Energy, forces and stress tensor
◮ 3-body term available (can be important for solids)

◮ Installation for WIEN2k:
◮ Not included in WIEN2k
◮ Download and compile the DFTD3 package.2 Then, copy the dftd3

executable in $WIENROOT

◮ Usage:
◮ Input file case.indftd3 (if not present a default one is copied automatically by x lapw)
◮ run lapw -dftd3 . . .
◮ case.scfdftd3 is included in case.scf

1
S. Grimme et al., J. Chem. Phys. 132, 154104 (2010)

2
https://www.chemie.uni-bonn.de/grimme/de/software/dft-d3
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DFT-D3: input file case.indftd3

Default (and recommended) input file:

method bj damping function f
damp
n

func default the one in case.in0∗

grad yes forces

pbc yes periodic boundary conditions

abc yes 3-body term

cutoff 95 interaction cutoff

cnthr 40 coordination number cutoff

num no numerical gradient

∗default will work for PBE, PBEsol, BLYP and TPSS. For other functionals, the

functional name has to be specified (see dftd3.f of DFTD3 package)
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DFTD-D3: application to hexagonal boron nitride

The GGA BLYP and PBE lead to too large interlayer distance and (nearly) no interlayer bonding

Adding the atom-pairwise correction D3 leads to good agreement with experiment
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Nonlocal vdW functionals

ENL
c,disp =

1

2

∫ ∫

ρ(r)Φ
(
r, r′

)
ρ(r′)d3rd3r′

Families of kernels Φ proposed in the literature:

◮ DRSLL1,LMKLL2:

◮ Derived from (adiabatic-connection-fluctuation-dissipation theorem) ACFDT

◮ Parameter: Zab

◮ VV103,rVV104,rVV10L5:

◮ Parameters: b and C

◮ vdW-DF3-opt1/vdW-DF3-opt26:

◮ Parameters: α and γ

1
M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)

2
K. Lee et al., Phys. Rev. B 82, 081101(R) (2010)

3
O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010)

4
R. Sabatini et al., Phys. Rev. B 87, 041108(R) (2013)

5
H. Peng and J. P. Perdew, Phys. Rev. B 95, 081105(R) (2017)

6
D. Chakraborty et al., J. Chem. Theory Comput. 16, 5893 (2020)
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Nonlocal vdW functionals in WIEN2k

◮ Features:
◮ Fast FFT-based method of Román-Pérez and Soler1:

1. ρ is smoothed close to the nuclei (density cutoff ρc) → ρs.
2

2. ρs is expanded in plane waves in the whole unit cell. Gmax is the plane-wave cutoff

of the expansion.

◮ More expensive than atom-pairwise methods
◮ Many of the vdW functionals from the literature are available (see list in

user’s guide)

◮ Usage:

◮ Input file case.innlvdw ($WIENROOT/SRC templates)
◮ run lapw -nlvdw . . .

1
G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009)

2
F. Tran et al., Phys. Rev. B 96, 054103 (2017)
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Nonlocal vdW functionals: input file case.innlvdw

1 kernel type

-0.8491 parameters of the kernel

20 plane-wave expansion cutoff GMAX

0.3 density cutoff rhoc

T calculation of the potential (T or F)

line 1 : “1” for DRSLL/LMKLL or “2” for rVV10(L)

line 2 : “-0.8491” for DRSLL, “-1.887” for LMKLL

“6.3 0.0093” for rVV10

line 3 : Use Gmax = 25 or 30 in case of numerical noise

line 4 : Eventually repeat with larger ρc (e.g, 0.6)

line 5 : Potential is necessary only for forces. Save computational time if set to “F”
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van der Waals interactions: tests on solids1

44 strongly bound solids 17 weakly bound solids
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Conclusion: rev-vdW-DF22 is a good choice for solids

1
F. Tran et al., Phys. Rev. Materials 3, 063602 (2019)

2
I. Hamada, Phys. Rev. B. 89, 121103(R) (2014)
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mBJ: a MGGA potential for reliable band gap calculations

◮ The standard semilocal functionals (PBE, SCAN, etc.) underestimate the band gap of solids. It is a

well-know problem in DFT.
◮ The modified Becke-Johnson (mBJ) potential was designed to be accurate for the band gap:1

vmBJ
x (r) = cvBR

x (r) + (3c− 2)
1

π

√
5

6

√

τ(r)

ρ(r)
c = α+ β




1

Vcell

∫

cell

|∇ρ(r)|
ρ(r)

d3r





1/2

where vBR
x is the Becke-Roussel potential2

◮ It is a potential that has no associated exchange energy Ex

◮ It depends on ρ, ∇ρ, ∇2ρ and τ and is therefore of the MGGA type
◮ α = 1.023 and β = −0.012 were fitted such that the experimental band gap of 22 solids are

reproduced at best1

◮ The average of |∇ρ| /ρ in the unit cell makes the mBJ potential unapplicable for systems with

vacuum or interfaces. A solution is to fix c or to use the local mBJ potential3.

1
F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

2
A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989)

3
T. Rauch, M. A. L. Marques, and S. Botti, J. Chem. Theory Comput. 16, 2654 (2020)
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mBJ: a MGGA potential for reliable band gap calculations
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Test set of 76 solids1

Test set of 473 solids2

mBJ is more accurate than the usual hybrid functionals and

much faster since it is a semilocal method. 5500 citations.

1
F. Tran and P. Blaha, J. Phys. Chem. A 121, 3318 (2017)

2
P. Borlido et al., npj Comput. Mater. 6, 96 (2020)
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Local mBJ potential for systems with vacuum or interfaces

◮ The average of |∇ρ| /ρ in the unit cell makes the mBJ potential unapplicable for systems with vacuum

or interfaces
◮ To remedy this problem, a local average of |∇ρ| /ρ is used1:

v
mBJ

x
(r) = c(r)v

BR

x
(r) + (3c(r) − 2)

1

π

√

5

6

√

τ(r)

ρ(r)
c(r) = α + βḡ(r)

ḡ(r) =
1

(2πσ2)3/2

∫

g(r
′
)e

−
|r−r′|2

2σ2 d
3
r
′

(local average around each point r)

g(r) =
1 − α

β

[

1 − erf

(

ρ(r)

ρth

)]

+
|∇ρ(r)|

ρ(r)
erf

(

ρ(r)

ρth

)

◮ Parameters: α = 0.488, β = 0.5, σ = 3.78, and ρth = 6.96× 10−4

◮ Error in the DFT band gap with respect to the G0W0 reference values for 298 2D materials

(monolayers)2:

MAE (eV) MARE (%)

PBE 1.50 51

HSE06 0.78 29

r2SCAN 1.18 39

TASK 0.66 25

GLLB-SC 0.42 21

LMBJ (β = 0.5) 0.78 35

LMBJ (β = 0.6) 0.50 32

1
T. Rauch, M. A. L. Marques, and S. Botti, J. Chem. Theory Comput. 16, 2654 (2020)

2
F. Tran et al., J. Chem. Phys. 155, 104103 (2021)
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How to run a calculation with the mBJ potential?

1. init lapw (choose LDA or PBE)

2. init mbj lapw (modifies case.in0 and creates case.inm tau)

3. run lapw -i 1 -NI (creates case.r2v and case.tausum)

4. save lapw case PBE 1 iteration

5. init mbj lapw again and choose mBJ or local mBJ:

1: mBJ

2: lmBJ

and one of the parameterizations for α and β:

0: Original mBJ values1

1: New parametrization2

2: For band gaps up to 7 eV2

3: Original BJ potential3

4: For perovskites (heavy atom, SOC)4

6. run lapw ...

1
F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

2
D. Koller et al., Phys. Rev. B 85, 155109 (2012)

3
A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006)

4
R. A. Jishi et al., J. Phys. Chem. C 118, 28344 (2014)
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GLLB-SC potential for band gaps

◮ Like mBJ, GLLB-SC is a potential (no energy functional)1:

vGLLB-SC
xc,σ = 2εPBEsol

x,σ +KLDA
x

Nσ∑

i=1

√
ǫH − ǫiσ

|ψiσ |2

ρσ
+ vPBEsol

c,σ

◮ Leads to a derivative discontinuity:

∆ =

∫

ψ∗
L





NσL∑

i=1

KLDA
x

(√
ǫL − ǫiσL

−
√
ǫH − ǫiσL

)
∣
∣ψiσL

∣
∣2

ρσL



ψLd
3r

Comparison with experiment: Eg = EKS
g +∆

◮ Much better than LDA/GGA for band gaps
◮ Not as good as mBJ for strongly correlated systems2

◮ Seems interesting for electric field gradient2

◮ Implemented in WIEN2k2: See user’s guide for usage

1
M. Kuisma et al., Phys. Rev. B 82, 115106 (2010)

2
F. Tran, S. Ehsan, and P. Blaha, Phys. Rev. Materials 2, 023802 (2018)
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Strongly correlated solids

◮ Typically, these are magnetic solids with an open-shell of 3d, 4f or 5f electrons that are well localized

(the opposite of itinerant) around the (transition metal, rare earth, actinide) atom

◮ The most known are antiferromagnetic oxides:

◮ MnO, FeO, CoO, NiO, La2CuO4, YBa2Cu3O6
◮ Ce, Ce2O3, PrO2
◮ UO2, PuO2

◮ These are very difficult cases for semilocal functionals, which lead to qualitatively wrong results:

◮ Too small magnetic moment or, even worse, wrong magnetic structure (nonmagnetic instead of

antiferromagnetic)
◮ Too small band gap or, even worse, metallic character instead of insulator

One reason: The strong onsite correlation among the 3d/4f /5f electrons is not well described. In

particular, the self-interaction error (the interaction of an electron with itself) inherent to semilocal

functionals is important for these systems.

More accurate methods for strongly correlated solids:

◮ mBJ potential (cheap)
◮ On-site DFT+U1 (cheap)
◮ On-site hybrid functionals (cheap)
◮ Hybrid functionals (expensive)
◮ LDA+DMFT (expensive, beyond-DFT method)

1
V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991)
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On-site DFT+U and hybrid methods in WIEN2k

◮ For solids, the hybrid functionals are computationally very expensive.
◮ In WIEN2k the on-site DFT+U 1 and on-site hybrid2,3 methods are

available. These methods are approximations of the Hartree-Fock/hybrid

methods:

Applied only inside atomic spheres of selected atoms and electrons of a

given angular momentum ℓ.
◮ As cheap as semilocal functionals

1
V. I. Anisimov et al., Phys. Rev. B 44, 943 (1991)

2
P. Novák et al., Phys. Stat. Sol. (b) 243, 563 (2006)

3
F. Tran et al., Phys. Rev. B 74, 155108 (2006)
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On-site DFT+U and hybrid methods

The exchange-correlation functional is

EDFT+U/hybrid
xc = Esemilocal

xc [ρ] + Eonsite[nmm′ ]

nmm′ is the density matrix of the correlated electrons

◮ For DFT+U both exchange and correlation/Coulomb are corrected:

EUonsite = Escreened HF
xc

︸ ︷︷ ︸

correction

− Exc
︸︷︷︸

d. count.

Depends on parameters U and J

There are several versions of the double-counting term
◮ For the hybrid methods only exchange is corrected:

E
hybrid
onsite = αEHF

x
︸ ︷︷ ︸

corr.

−αEsemilocal
x

︸ ︷︷ ︸

d. count.

α (fraction of HF exchange) is a parameter ∈ [0, 1]
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How to run DFT+U and on-site hybrid calculations?

1. Create the input files:
◮ case.inorb and case.indm for DFT+U
◮ case.ineece for on-site hybrid functionals (case.indm created automatically):

2. Run the job (can only be run with runsp lapw):
◮ DFT+U : runsp lapw -orb . . .
◮ Hybrid: runsp lapw -eece . . .

For a calculation without spin-polarization (ρ↑ = ρ↓): runsp c lapw

-orb/eece . . .
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Input file case.inorb

DFT+U applied to the 4f electrons of atoms No. 2 and 4:

1 2 0 nmod, natorb, ipr

PRATT,1.0 mixmod, amix

2 1 3 iatom, nlorb, lorb

4 1 3 iatom, nlorb, lorb

1 nsic (LDA+U(SIC) used)

0.61 0.07 U J (Ry)

0.61 0.07 U J (Ry)

nsic=0 for the AMF method (less strongly correlated electrons)

nsic=1 for the SIC method

nsic=2 for the HMF method

Review article : E. R. Ylvisaker et al., Phys. Rev. B 79, 035103 (2009)
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Input file case.ineece

On-site hybrid functional applied to the 4f electrons of atoms No. 2 and 4:

-12.0 2 emin, natorb

2 1 3 iatom, nlorb, lorb

4 1 3 iatom, nlorb, lorb

HYBR HYBR/EECE

0.25 fraction of exact exchange α
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SCF cycle of DFT+U in WIEN2k

lapw0 → vDFT
xc,σ + vee + ven (case.vspup(dn), case.vnsup(dn))

orb -up → v↑mm′ (case.vorbup)

orb -dn → v↓mm′ (case.vorbdn)

lapw1 -up -orb → ψ↑
nk, ǫ

↑
nk (case.vectorup, case.energyup)

lapw1 -dn -orb → ψ↓
nk, ǫ

↓
nk (case.vectordn, case.energydn)

lapw2 -up -orb → ρ↑val (case.clmvalup), n↑
mm′ (case.dmatup)

lapw2 -dn -orb → ρ↓val (case.clmvaldn), n↓
mm′ (case.dmatdn)

lcore -up → ρ↑core (case.clmcorup)

lcore -dn → ρ↓core (case.clmcordn)

mixer → mixed ρσ and nσmm′
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Hybrid functionals

◮ On-site hybrid functionals can be applied only to localized electrons
◮ Full hybrid functionals are necessary (but expensive) for solids with delocalized electrons

(e.g., in sp-semiconductors)

Two types of full hybrid functionals available in WIEN2k1:

◮ unscreened:

Exc = EDFT
xc + α

(

EHF
x − EDFT

x

)

◮ screened (short-range), 1
|r−r′|

→ e
−λ|r−r′|
|r−r′|

:

Exc = EDFT
xc + α

(

ESR−HF
x − ESR−DFT

x

)

screening leads to faster convergence with k-points sampling

1
F. Tran and P. Blaha, Phys. Rev. B 83, 235118 (2011)

39 / 46

https://doi.org/10.1103/PhysRevB.83.235118


Hybrid functionals: technical details

◮ 10-1000 times more expensive than semilocal functionals
◮ k-point and MPI parallelizations

◮ Approximations to speed up the calculations:

◮ Reduced k-mesh for the HF potential. Example:

For a calculation with a 12× 12× 12 k-mesh, the reduced k-mesh for the HF

potential can be:

6× 6× 6, 4× 4× 4, 3× 3× 3, 2× 2× 2 or 1× 1× 1
◮ Non-self-consistent calculation of the band structure

◮ Use run bandplothf lapw for band structure
◮ Can be combined with spin-orbit coupling
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Hybrid functionals: input file case.inhf

Example for YS-PBE0 (similar to HSE06 from Heyd, Scuseria and Ernzerhof1)

0.25 fraction α of HF exchange

T screened (T, YS-PBE0) or unscreened (F, PBE0)

0.165 screening parameter λ
20 number of bands for the 2nd Hamiltonian

6 GMAX

3 lmax for the expansion of orbitals

3 lmax for the product of two orbitals

1d-3 radial integrals below this value neglected

Important: The computational time will depend strongly on the number of

bands, GMAX, lmax and the number of k-points

1
A. V. Krukau et al., J. Chem. Phys. 125, 224106 (2006)
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Hybrid functionals: input file case.inhf

Example for YS-PBE0 (similar to HSE06 from Heyd, Scuseria and Ernzerhof1)

0.25 fraction α of HF exchange

T screened (T, YS-PBE0) or unscreened (F, PBE0)

0.165 screening parameter λ
20 number of bands for the 2nd Hamiltonian

6 GMAX

3 lmax for the expansion of orbitals

3 lmax for the product of two orbitals

1d-3 radial integrals below this value neglected

Important: The computational time will depend strongly on the number of

bands, GMAX, lmax and the number of k-points

1
A. V. Krukau et al., J. Chem. Phys. 125, 224106 (2006)
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How to run hybrid functionals?

1. init lapw

2. run lapw for the semilocal functional (recommended), save lapw
3. init hf lapw (this will create/modify input files)

3.1 adjust case.inhf according to your needs

3.2 reduced k-mesh for the HF potential? Yes or no

3.3 specify the k-mesh

4. run lapw -hf (-redklist) (-diaghf) ...
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SCF cycle of hybrid functionals in WIEN2k

lapw0 -grr → vDFT
x (case.r2v), αEDFT

x (:AEXSL)

lapw0 → vDFT
xc + vee + ven (case.vsp, case.vns)

lapw1 → ψDFT
nk , ǫDFT

nk (case.vector, case.energy)

lapw2 →
∑

nk ǫ
DFT
nk (:SLSUM)

hf → ψnk, ǫnk (case.vectorhf, case.energyhf)

lapw2 -hf → ρval (case.clmval)

lcore → ρcore (case.clmcor)

mixer → mixed ρ
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Nonmagnetic and ferromagnetic phases of cerium1

Small U (1.5 eV) or αx (0.08) leads to correct stability ordering
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1
F. Tran, F. Karsai, and P. Blaha, Phys. Rev. B 89, 155106 (2014)
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Antiferromagnetic transition-metal oxides (strongly correlated electrons)

mBJ is as accurate as the hybrid functional HSE06 for antiferromagnetic oxides1

1
F. Tran, S. Ehsan, and P. Blaha, Phys. Rev. Mater. 2, 023802 (2018)
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Some recommendations

Before starting a calculation:

◮ Read a few DFT papers about your system or similar ones:
◮ This should give you an idea which XC functional(s) should be the most

reliable (or the least unreliable) for the accuracy.
◮ Do not apply DFT blindly!

◮ Figure out which computational resources you have:
◮ Hybrid functionals and GW require substantially more computational

resources (and patience) than semilocal methods.
◮ Do test calculations with reduced basis set size and number of k-points to

have an idea of the computational time.

Thank you for your attention!
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