Benchmarking exchange-correlation potentials with the mstar60 dataset

Oleg Rubel
Department of Materials Science and Engineering

McMaster University

Effective mass

Typically Si (conduction band, along <100>): $m^{*} \sim 0.9 m_{0}$ GaAs (conduction band): $m^{*} \sim 0.07 m_{0}$

Mobility of charge carriers (Drude model):

$$
\mu=\frac{e \tau}{m^{*}}
$$

Effective mass as a tensor

$$
\begin{aligned}
& \left(k_{x 0}, k_{y 0}, k_{z 0}\right) \quad E\left(\mathbf{k}_{0}+\mathbf{q}\right) \approx E_{0}\left(\mathbf{k}_{0}\right)+\frac{\hbar^{2}}{4} \sum_{\alpha, \beta} \frac{q_{\alpha} q_{\beta}}{m_{\alpha \beta}^{*}} \quad \alpha, \beta=x, y, z(\text { or } 1,2,3) \\
& m_{\alpha \beta}^{*}=\hbar^{2}\left(\frac{\partial^{2} E}{\partial k_{\alpha} \partial k_{\beta}}\right)^{-1} \text { need to fit "many" parabolas in 3D k-space } \\
& \text { For Si (conduction band): } \quad m^{*} \sim\left(\begin{array}{ccc}
0.9 & 0 & 0 \\
0 & 0.2 & 0 \\
0 & 0 & 0.2
\end{array}\right) m_{0} \\
& \text { For GaAs (conduction band): } \quad m^{*} \sim\left(\begin{array}{ccc}
0.07 & \boxed{0} & 0 \\
0 & 0.07 & 0 \\
0 & 0 & 0.07
\end{array}\right) m_{0} \\
& \text { "Average" conductivity mass: } \quad m_{\text {cond }}^{*}=\left[\frac{\left(m_{x x}^{*}\right)^{-1}+\left(m_{y y}^{*}\right)^{-1}+\left(m_{z z}^{*}\right)^{-1}}{3}\right]^{-1}
\end{aligned}
$$

Good news: $\left(m_{x x}^{*}\right)^{-1}+\left(m_{y y}^{*}\right)^{-1}+\left(m_{z z}^{*}\right)^{-1}$ is invariant to transformation of coordinates

Perturbation theory

Unperturbed Schrödinger equation:	$\hat{H}\left(k_{0}\right)\left\|\psi_{n, k_{0}}\right\rangle=E_{n}\left(k_{0}\right)$
Bloch function:	$\psi_{n, k_{0}}(x)=u_{n, k_{0}}(x) e^{i k_{0} x}$
Momentum matrix elements:	$p_{n l, k_{0}}=\left\langle u_{n, k_{0}}\right\| \hat{p}\left\|u_{l, k_{0}}\right\rangle$

Matrix elements of the perturbed Hamiltonian from $k \cdot p$ (assuming ID):

$$
H_{n l}\left(k_{0}+q\right)=\left\langle u_{n, k_{0}}\right| \hat{H}\left(k_{0}+q\right)\left|u_{l, k_{0}}\right\rangle \approx \frac{\hbar}{m_{0}} q p_{n l, k_{0}}+\delta_{n l}\left[E_{n}\left(k_{0}\right)+\frac{\hbar^{2} q k_{0}}{m_{0}}+\frac{\hbar^{2} q^{2}}{2 m_{0}}\right]
$$

Perturbed eigenvalues: $\quad E_{n}\left(k_{0}+q\right) \approx E_{n}\left(k_{0}\right)+\frac{\hbar\left(\hbar k_{0}+p_{n n, k_{0}}\right)}{m_{0}} q+\frac{\hbar^{2} q^{2}}{2 m_{0}}\left(1+\frac{2}{m_{0}} \sum_{l \neq n} \frac{\left|p_{n l, k_{0}}\right|^{2}}{E_{n}-E_{l}}\right)$
should be $1 / m^{*}$
Effective mass (non-degenerate, 3D):

$$
\frac{m_{0}}{m_{\alpha \beta, n, k_{0}}^{*}}=\delta_{\alpha \beta}+\frac{1}{m_{0}} \sum_{l \neq n} \frac{p_{n l, k_{0}}^{(\alpha)} p_{l n, k_{0}}^{(\beta)}+p_{n l, k_{0}}^{(\beta)} p_{l n, k_{0}}^{(\alpha)}}{E_{n, k_{0}}-E_{l, k_{0}}} \quad \alpha, \beta=x, y, z(\text { or } 1,2,3)
$$

Band gap issue

GaAs

GGA-PBE band gap of GaAs: 0.4 eV

Kim et al. Phys. Rev. B 82, 2052 I2 (20I0)

Element	Method	$\left\|m_{\text {electron }}^{*} / m_{e}\right\|$
GaAs	PBE	0.030
	MBJLDA $_{\text {bgfit }}$	0.090
	MBJLDA $_{\text {efmfit }}$	0.066
	HSE $_{\text {bgfit }}$	0.067
	Expt.	0.067

Finite sum over states issue

Si (s-p bonding)

Cul (Cu-d states)

(b)

- s-, p-, d-, f-LOs are added at high energy (~100 Ry)
- $\Delta l \pm 1$ rule for optical transitions
- Semicore and core states are also important
- GW calculations also "suffer" from the sum over states (e.g., $\mathrm{ZnO}, \mathrm{MoS}_{2}$)
- Sternheimer PT avoids $\sum_{l \neq n}$ (e.g., Abinit implementation)

Comp. Phys. Commun. 26 I, I 07648 (202I)

Implementation in WIEN2k (and VASP)

0
rubel75 / mstar
https://github.com/rubel75/mstar
\square README $\triangle \downarrow$ GPL-3.0 license \quad :

mstar

Effective mass calculation with DFT using a perturbation theory. Currently supported codes:

- WIEN2k
- VASP

It is written in Fortran and intended for Linux OS

Home
Oleg Rubel edited this page on Jul 9, 2020 • 8 revisions

Welcome to the mstar wiki!

- How to generate case.mommat2 file in WIEN2k
- How to generate WAVEDER file in VASP
- Tutorial: Si with SOC (WIEN2k)
- Tutorial: Si with SOC (VASP)

Workflow

(I) Standard SCF calculation

- SOC is important
(2) Expand number of bands (add HELOs). Recalculate DFT orbitals.
- Edit"case.inl (c)", increase $E_{\max }$ and execute "x lapwl"; edit"case.inso", increase $E_{\text {max }}$ and execute "x lapwso"
- Alternatively, execute "x_nmr -mode inl -nodes 3" and copy "case.inl (c)_nmr" as "case.inl (c)"; edit "case.inso", increase $E_{\max }=999$ Ry (get all eigenvalues), execute "x lapwl" and "x lapwso"
(3) Compute momentum matrix elements (same as for "optic")
- Get the template "case.inop", edit to enable writing of momentum matrix elements "OFF \rightarrow ON", increase increase $E_{\max }$ to match the value set in "case.inso"
- Execute optic "x optic -so"; check presence of "case.mommat2*" files
(4) Compute $\left[m_{0} / m_{\alpha \beta}^{*}\right]^{-1}$ tensor for each k -point and band index using "mstar"
- Execute mstar "/path/to/mstar case.mommat2up le-5" (here $\Delta E=10^{-5} \mathrm{Ha}$ is the search tolerance for degenerate states)
- Check output files "minv_ij-up.dat" ($m_{0} / m_{\alpha \beta, n, k_{0}}^{*}$ tensor), "minv_pr-up.dat" (principal components of the tensor),"minv_c-up.dat" (conductivity mass $m_{0} /\left\langle m_{n, k_{0}}^{*}\right\rangle_{\text {cond }}$), and "minv_d-up.dat" (density of states mass $\left.m_{0} /\left\langle m_{n, k_{0}}^{*}\right\rangle_{\text {dos }}\right)$

Demo "mstar" in WIEN2k (also offered as a tutorial)

"mstar60" dataset

Benchmarking exchange-correlation potentials with the mstar60 dataset: Importance of the nonlocal exchange potential for effective mass calculations in semiconductors

Magdalena Laurien and Oleg Rubel
Phys. Rev. B 106, 045204 - Published 15 July 2022

| Si (227) | $\begin{aligned} & m_{n, \perp}(\mathrm{CBM}) \\ & m_{n, \\|}(\mathrm{CBM}) \end{aligned}$ | CdTe (216) | $\begin{aligned} & m_{n}(\Gamma) \\ & m_{p, \mathrm{lh}}[100](\Gamma) \end{aligned}$ | $\begin{aligned} & \mathrm{MoS}_{2}[73](194) \\ & \mathrm{WS}_{2}(194) \end{aligned}$ | $m_{p}(\bar{\Gamma}, \bar{\Gamma}-\overline{\mathrm{K}}$ direction $)$
 $m_{p}(\overline{\mathrm{~K}}, \bar{\Gamma}-\overline{\mathrm{K}}$ direction $)$
 $m_{p, \mathrm{VB}-1}(\overline{\mathrm{~K}}, \bar{\Gamma}-\overline{\mathrm{K}}$ direction) | |
|---|---|---|---|---|---|---|---|
| | $\begin{aligned} & m_{p, \text { hh }}(\Gamma)[100] \\ & m_{p, \text { hh }}(\Gamma)[100] \\ & m_{p, \text { so }}(\Gamma) \end{aligned}$ | PbS (225) | $\begin{aligned} & m_{n, \perp}(\mathrm{~L}) \\ & m_{n, \\|}(\mathrm{L}) \end{aligned}$ | 1 L MoS 2 | $m_{p}(\Gamma, \Gamma-\mathrm{K}$ direction $)$
 $m_{p}(\mathrm{~K}, \Gamma-\mathrm{K}$ direction) |
| GaAs (216) | $m_{n}(\Gamma)$
 $m_{n, \perp}$ (X6) | | $\begin{aligned} & m_{p, \perp}(\mathrm{~L}) \\ & m_{p, \\|}(\mathrm{L}) \end{aligned}$ | | $m_{n}(\mathrm{~K})$ |
| | $m_{n, \\|}(\mathrm{X} 6)^{\dagger \mathrm{a}}$ | PbSe (225) | $\begin{aligned} & m_{n, \perp}(\mathrm{~L}) \\ & m_{n, \\|}(\mathrm{L}) \end{aligned}$ | $1 \mathrm{~L} \mathrm{MoSe}_{2}$ | $\begin{aligned} & m_{p}(\mathrm{~K}, \Gamma-\mathrm{K} \text { direction }) \\ & m_{n}(\mathrm{~K}) \end{aligned}$ |
| | $\begin{aligned} & m_{n, \perp} \text { (L6) } \\ & m_{n, \\|} \text { (L6) } \end{aligned}$ | | $m_{p, \perp}(\mathrm{~L})$ | $1 \mathrm{~L} \mathrm{WS}_{2}$ | $m_{p}(\bar{\Gamma}, \bar{\Gamma}-\overline{\mathrm{K}}$ direction $)$ |
| | $m_{p, \text { hh }}(\Gamma)$ [100] | | $m_{p, \\|}(\mathrm{L})$ | | $m_{p}(\overline{\mathrm{~K}}, \bar{\Gamma}-\overline{\mathrm{K}}$ direction) |
| | $\begin{aligned} & m_{p, \mathrm{lh}}(\Gamma)[100] \\ & m_{p, \mathrm{so}}(\Gamma) \end{aligned}$ | PbTe (225) | $\begin{aligned} & m_{n, \perp}(\mathrm{~L}) \\ & m_{n, \\|}(\mathrm{L}) \end{aligned}$ | 1 LWSe 2 | $m_{p, \mathrm{so}}(\overline{\mathrm{K}}, \bar{\Gamma}-\overline{\mathrm{K}}$ direction)
 $m_{p}(\Gamma, \Gamma-\mathrm{K}$ direction $)$ |
| GaN (186) | $\begin{aligned} & m_{n, \\|}(\Gamma) \\ & m_{n, \perp}(\Gamma) \end{aligned}$ | | $\begin{aligned} & m_{n, \perp}(\mathrm{~L}) \\ & m_{p, \\|}(\mathrm{L}) \end{aligned}$ | | |
| InP (216) | $\begin{aligned} & m_{n}(\Gamma) \\ & m_{p, \text { hh }}(\Gamma)[100] \\ & m_{p, \text { hh }}(\Gamma)[100] \\ & m_{p, \text { so }}(\Gamma) \end{aligned}$ | SiC (216) BN [70] (194) | $\begin{aligned} & m_{n, \\|}(\mathrm{X}) \\ & m_{n, \perp}(\mathrm{X}) \\ & m_{p}(\Gamma)[100] \\ & m_{p}(\overline{\mathrm{~K}}, \bar{\Gamma}-\overline{\mathrm{K}} \text { direction })^{\dagger \mathrm{a}} \end{aligned}$ | | |
| CdS (186) | $m_{n, \perp}(\Gamma$, A exciton $)$
 $m_{n, \\|}(\Gamma$, A exciton)
 $m_{p, \perp}(\Gamma$, A exciton)
 $m_{p, \\|}(\Gamma, \text { A exciton })^{\dagger a}$ | bP (64) | $\begin{aligned} & m_{n}(\mathrm{Y})[010] \\ & m_{n}(\mathrm{Y})[001] \\ & m_{n}(\mathrm{Y})[100] \\ & m_{p}(\mathrm{Y})[010] \\ & m_{p}(\mathrm{Y})[001] \end{aligned}$ | | |

GGA-PBE m^{*} are underestimated

$\mathrm{mB} \mathrm{m}^{*}$ are (slightly) overestimated

Kim et al. Phys. Rev. B 82, 2052 I2 (20I0)

Element	Method	$\left\|m_{\text {electron }}^{*} / m_{e}\right\|$
GaAs	PBE	0.030
	MBJLDA $_{\text {bgfit }}$	0.090
	MBJLDA $_{\text {efmfit }}$	0.066
	HSE $_{\text {bgfit }}$	0.067
	Expt.	0.067

$$
\frac{m_{0}}{m_{\mathrm{c}}^{*}} \approx=1+\frac{2 p_{\mathrm{v}, \mathrm{c}}^{2}}{m_{0} E_{g}}
$$

Momentum matrix element $\sum p_{\mathrm{c}, \mathrm{v}}^{2}$ for GaAs

HSE06 m* show best agreement with experiment

Kim et al. Phys. Rev. B 82, 2052I2 (20I0)

Element	Method	$\left\|m_{\text {electron }}^{*} / m_{e}\right\|$
GaAs	PBE	0.030
	MBJLDA $_{\text {bgfit }}$	0.090
	MBJLDA $_{\text {efmfit }}$	0.066
	HSE $_{\text {bgfit }}$	0.067
	Expt.	0.067

$$
\frac{m_{0}}{m_{\mathrm{c}}^{*}} \approx=1+\frac{2 m_{0} v_{\mathrm{v}, \mathrm{c}}^{2}}{E_{g}}
$$

$v^{2} \neq p^{2}$ velocity matrix element

Phys. Rev. B I 06, 045204 (2022)

HSE06 m* from PT for GaAs with varied \%HF

$$
\begin{aligned}
E_{\mathrm{xc}}^{\mathrm{HSE}}= & a E_{\mathrm{x}}^{\mathrm{HF}, \mathrm{SR}}(\omega)+(1-a) E_{\mathrm{x}}^{\mathrm{PBE}, \mathrm{SR}}(\omega) \\
& +E_{\mathrm{x}}^{\mathrm{PBE}, \mathrm{LR}}(\omega)+E_{\mathrm{c}}^{\mathrm{PBE}},
\end{aligned}
$$

Phys. Rev. B I 06, 045204 (2022)

Additional contribution due to non-local potential

Schrödinger equation with a local potential

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\mathbf{r})+V(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r})
$$

LDA, GGA, mBJ, SCAN

Schrödinger equation with a non-local potential

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\mathbf{r})+\int V\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}=E \psi(\mathbf{r})
$$

Hartree-Fock exchange (spinless), also GW:

$$
\begin{aligned}
&-\int\left[\sum_{j} \frac{\psi_{j}^{*}\left(\mathbf{r}^{\prime}\right) \psi_{j}(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right] \psi_{i}\left(\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime} \\
& \hat{v}=\frac{i}{\hbar}[\hat{H}, \mathbf{r}]=\frac{\hat{p}}{m_{0}}+\frac{i}{\hbar}\left[V\left(\mathbf{r}, \mathbf{r}^{\prime}\right), \mathbf{r}\right]
\end{aligned}
$$

$$
\hat{v}=\frac{i}{\hbar}[\hat{H}, \mathbf{r}]=\frac{\hat{p}}{m_{0}}
$$

Does it mean that the "true" XC potential should be non-local?

Open question:Why $\sum v_{c, v}^{2}>\sum p_{c, v}^{2}$?

Proper \hat{v} matrix elements in WIEN2k

Length gauge matrix elements [Asahi et al., Phys. Rev. B 59, 7486 (I999)]:

Table 3. Length-gauge $\left|v_{m n}^{(x)}\right|^{2}$ and velocity-gauge $\left|p_{m n}^{(x)}\right|^{2}$ matrix elements (at.u.) in GaAs calculated using WIEN2k (with YSH) and VASP (with HSE06). Due to the non-local potential the velocity and the length gauges are not identical. The band degeneracy is given as a superscript in parentheses and the subscripts are explained in Figure 2a. The logarithmic deviation between $\sum\left|p_{v c}^{(x)}\right|^{2}$ and $\sum\left|v_{v c}^{(x)}\right|^{2}$ is given in parentheses (Δ as per Equation (10)).

Transition	WIEN2k	$\Sigma\left\|\boldsymbol{v}_{\boldsymbol{m} \boldsymbol{n}}^{(x)}\right\|^{\mathbf{2}}$	VASP
$\Gamma_{l h, h h}^{(\times 4)}-\Gamma_{c}^{(\times 2)}$	0.534		$\sum\left\|\boldsymbol{p}_{\boldsymbol{m} \boldsymbol{n}}^{(x)}\right\|^{\mathbf{2}}$
$\Gamma_{\text {so }}^{(\times 2)}-\Gamma_{c}^{(\times 2)}$	0.255		0.541
Total	$0.789(+23 \%)$	0.256	0.420

$v_{n l}^{(\alpha)} \approx \frac{1}{q}\left\langle u_{\mathbf{k}, l} \mid u_{\mathbf{k}+\mathbf{q}_{\alpha}, n}\right\rangle\left[E_{n}\left(\mathbf{k}+\mathbf{q}_{\alpha}\right)-E_{l}(\mathbf{k})\right] \quad$ for very small q
$\left\langle u_{\mathbf{k}, l} \mid u_{\mathbf{k}+\mathbf{q}_{\alpha}, n}\right\rangle$ from wien2wannier

Other materials

$\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{Pbl}_{3}$

Transition	$\sum\left\|v_{m n}^{(x, y, z)}\right\|^{2}$	$\sum\left\|\boldsymbol{p}_{m n}^{(x, y, z)}\right\|^{2}$
$R_{v}^{(\times 2)}-R_{c}^{(\times 2)}$	$0.195,0.150,0.128(+11,+11,+8 \%)^{a}$	$0.174,0.135,0.118$

Monolayer MoS_{2}

$|v|^{2}$ enhancement $=$ stronger optical transitions \& more efficient dielectric screening

Computation I 0, 22 (2022)

Summary

- Computing the full tensor $m_{\alpha \beta}^{*}$ by polynomial fitting can be non-trivial
- "mstar" gives access to the full tensor $m_{\alpha \beta}^{*}$ via perturbation theory (all k-points, all bands)
- The perturbation sum converges slowly (especially with d-electrons at the band edges)
- GGA-PBE masses are generally too light (E_{g} error)
- mBJ masses are somewhat heavier (low $p_{c, v}^{2}$)
- Hybrid (PBE + \%HF) masses are most accurate (improved $v_{c, v}^{2}>p_{c, v}^{2}$ due to non-locality of the XC potential)
- WIEN2k can compute velocity matrix elements (incl. non-locality of the XC potential) via a finite difference ($\sim 30 \%$ correction for $v_{c, v}^{2}$)

Acknowledgement

mstar in WIEN2k:

- Peter Blaha
- Fabien Tran
- Xavier Rocquefelte

WIEN2WANNIER:

- Elias Assmann
- Jan Kunes
- Philipp Wissgott

mstar60:

- Magdalena Laurien

