Benchmarking exchange-correlation potentials with the mstar60 dataset

Oleg Rubel

Department of Materials Science and Engineering

Effective mass

Typically Si (conduction band, along <100>): $m^* \sim 0.9m_0$ GaAs (conduction band): $m^* \sim 0.07m_0$

Mobility of charge carriers (Drude model):

$$\mu = \frac{e\tau}{m^*}$$

Effective mass as a tensor

Good news: $(m_{xx}^*)^{-1} + (m_{yy}^*)^{-1} + (m_{zz}^*)^{-1}$ is <u>invariant</u> to transformation of coordinates

Challenge: Get m^{*} without calculating $E(\mathbf{k})$ in the vicinity of \mathbf{k}_0

Perturbation theory

Unperturbed Schrödinger equation:

Bloch function:

 $\hat{H}(k_0) | \psi_{n,k_0} \rangle = E_n(k_0) | \psi_{n,k_0} \rangle$

 $\psi_{n,k_0}(x) = u_{n,k_0}(x) e^{ik_0 x}$

Momentum matrix elements:

$$p_{nl,k_0} = \langle u_{n,k_0} | \hat{p} | u_{l,k_0} \rangle$$

Matrix elements of the perturbed Hamiltonian from $k \cdot p$ (assuming ID):

$$H_{nl}(k_0 + q) = \langle u_{n,k_0} | \hat{H}(k_0 + q) | u_{l,k_0} \rangle \approx \frac{\hbar}{m_0} q p_{nl,k_0} + \delta_{nl} \left[E_n(k_0) + \frac{\hbar^2 q k_0}{m_0} + \frac{\hbar^2 q^2}{2m_0} \right]$$

Perturbed eigenvalues:
$$E_n(k_0 + q) \approx E_n(k_0) + \frac{\hbar(\hbar k_0 + p_{nn,k_0})}{m_0}q + \frac{\hbar^2 q^2}{2m_0} \left(1 + \frac{2}{m_0}\sum_{l \neq n} \frac{|p_{nl,k_0}|^2}{E_n - E_l}\right)$$

should be $1/m^*$

Effective mass (non-degenerate, 3D):

$$\frac{m_0}{m_{\alpha\beta,n,k_0}^*} = \delta_{\alpha\beta} + \frac{1}{m_0} \sum_{l \neq n} \frac{p_{nl,k_0}^{(\alpha)} p_{ln,k_0}^{(\beta)} + p_{nl,k_0}^{(\beta)} p_{ln,k_0}^{(\alpha)}}{E_{n,k_0} - E_{l,k_0}} \qquad \alpha, \beta = x, y, z \text{ (or } 1, 2, 3)$$

Book: Ashcroft and Mermin

Band gap issue

$$\frac{m_0}{m_{\mathsf{c}}^*} \approx 1 + \frac{1}{m_0} \sum_{l \in \mathsf{h}} \frac{p_{\mathsf{c},l}^{(\alpha)} p_{l,\mathsf{c}}^{(\beta)} + p_{\mathsf{c},l}^{(\beta)} p_{l,\mathsf{c}}^{(\alpha)}}{E_{\mathsf{c}} - E_l}$$
$$\frac{m_0}{m_{\mathsf{c}}^*} \approx 1 + \frac{2(p_{\mathsf{h}\mathsf{h},\mathsf{c}}^2 + p_{\mathsf{l}\mathsf{h},\mathsf{c}}^2 + p_{\mathsf{so,c}}^2)}{m_0(E_{\mathsf{c}} - E_{\mathsf{V}})} = 1 + \frac{2p_{\mathsf{V},\mathsf{c}}^2}{m_0 E_g}$$

GGA-PBE band gap of GaAs: 0.4 eV

Kim et al. Phys. Rev. B **82**, 205212 (2010)

Element	Method	$ m_{\rm electron}^*/m_e $		
GaAs	PBE	0.030		
	MBJLDA _{bgfit}	0.090		
	MBJLDA _{efmfit}	0.066		
	HSE _{bgfit}	0.067		
	Expt.	0.067		

Finite sum over states issue

Si (s-p bonding)

Cul (Cu-d states)

- s-, p-, d-, f-LOs are added at high energy (~100 Ry)
- $\Delta l \pm 1$ rule for optical transitions
- Semicore and core states are also important
- GW calculations also "suffer" from the sum over states (e.g., ZnO, MoS₂)

• Sternheimer PT avoids $\sum_{l \neq n}$ (e.g., Abinit implementation)

Comp. Phys. Commun. 261, 107648 (2021)

Implementation in WIEN2k (and VASP)

rubel75 / mstar	https://github.com/rube	l75/mstar					
다 README 최 GPL-3.0 li	cense					Ø	:=
mstar							
Effective mass calculation	n with DFT using a perturbat	ion theory. Cu	rrently supp	ported codes:			
 WIEN2k VASP 		🗄 Projects	🛱 Wiki	③ Security	🗠 Insights	诊 Settin	gs
It is written in Fortran an	d intended for Linux OS	Hom Oleg Rube	1C el edited this	page on Jul 9, 2	2020 · 8 revision	s	
		Welcome	e to the mst	tar wiki!			
		• <u>How</u>	<u>i to generat</u>	te case.momn	nat2 file in WI	EN2k	
		• <u>How</u>	<u>i to generat</u>	te WAVEDER 1	file in VASP		
		Tuto	orial: Si with	SOC (WIEN2	k)		

Tutorial: Si with SOC (VASP) ٠

Workflow

- (I) Standard SCF calculation
 - SOC is important
- (2) Expand number of bands (add HELOs). Recalculate DFT orbitals.
 - Edit "case.in I (c)", increase E_{max} and execute "x lapw I"; edit "case.inso", increase E_{max} and execute "x lapwso"
 - Alternatively, execute "x_nmr -mode in I -nodes 3" and copy "case.in I (c)_nmr" as "case.in I (c)"; edit "case.inso", increase E_{max} = 999 Ry (get all eigenvalues), execute "x lapwI" and "x lapwso"
- (3) Compute momentum matrix elements (same as for "optic")
 - Get the template "case.inop", edit to enable writing of momentum matrix elements "OFF \rightarrow ON", increase increase E_{max} to match the value set in "case.inso"
 - Execute optic "x optic -so"; check presence of "case.mommat2*" files
- (4) Compute $[m_0/m_{\alpha\beta}^*]^{-1}$ tensor for each k-point and band index using "mstar"
 - Execute mstar "/path/to/mstar case.mommat2up Ie-5" (here $\Delta E = 10^{-5}$ Ha is the search tolerance for degenerate states)
 - Check output files "minv_ij-up.dat" $(m_0/m_{\alpha\beta,n,k_0}^* \text{ tensor})$, "minv_pr-up.dat" (principal components of the tensor), "minv_c-up.dat" (conductivity mass $m_0/\langle m_{n,k_0}^* \rangle_{\text{cond}}$), and "minv_d-up.dat" (density of states mass $m_0/\langle m_{n,k_0}^* \rangle_{\text{dos}}$)

Warning: Do not use with hybrid (%HF) functionals in WIEN2k

Demo "mstar" in WIEN2k (also offered as a tutorial)

"mstar60" dataset

Benchmarking exchange-correlation potentials with the mstar60 dataset: Importance of the nonlocal exchange potential for effective mass calculations in semiconductors

Magdalena Laurien and Oleg Rubel Phys. Rev. B **106**, 045204 – Published 15 July 2022

Si (227)	$m_{n,\perp}$ (CBM) $m_{n,\parallel}$ (CBM)	CdTe (216)	$m_n(\Gamma)$ $m_{p,\text{lh}}[100](\Gamma)$ $m_{p,\text{lh}}[100](\Gamma)$	MoS ₂ [73] (194) WS ₂ (194)	m_p ($\overline{\Gamma}$, $\overline{\Gamma}$ - \overline{K} direction) m_p (\overline{K} , $\overline{\Gamma}$ - \overline{K} direction) $m_{p,\text{VB}-1}$ (\overline{K} , $\overline{\Gamma}$ - \overline{K} direction)
	$m_{p,hh} (\Gamma) [100]$ $m_{p,lh} (\Gamma) [100]$ $m_{p,so} (\Gamma)$	PbS (225)	$m_{p,\text{hh}} (\text{L})$ $m_{n,\perp} (\text{L})$ $m_{n,\parallel} (\text{L})$ $m_{p,\perp} (\text{L})$	1L MoS ₂	m_p (Γ , Γ -K direction) m_p (K, Γ -K direction) m_n (K)
GaAs (216)	$m_n (\Gamma)$ $m_{n,\perp} (X6)$ $m_{n,\parallel} (X6)^{\dagger a}$	PbSe (225)	$m_{p,\perp}$ (L) $m_{n,\perp}$ (L) $m_{n,\parallel}$ (L)	1L MoSe ₂	m_p (K, Γ -K direction) m_n (K)
	$m_{n,\perp}$ (L6) $m_{n,\parallel}$ (L6) $m_{p,\text{hh}}$ (Γ) [100] $m_{n,\parallel}$ (Γ) [100]	PbTe (225)	$m_{p,\perp}$ (L) $m_{p,\parallel}$ (L) $m_{p,\parallel}$ (L)	$1L WS_2$	m_p ($\overline{\Gamma}$, $\overline{\Gamma}$ - \overline{K} direction) m_p (\overline{K} , $\overline{\Gamma}$ - \overline{K} direction) m_p (\overline{K} , $\overline{\Gamma}$ - \overline{K} direction)
GaN (186)	$m_{p,\text{so}} (\Gamma)$ $m_{p,\text{so}} (\Gamma)$ $m_{n,\parallel} (\Gamma)$ $m_{n,\parallel} (\Gamma)$		$m_{n,\parallel}$ (L) $m_{n,\perp}$ (L) $m_{p,\parallel}$ (L)	1L WSe ₂	$m_{p,so}$ (Γ , Γ -K direction) m_p (Γ , Γ -K direction)
InP (216)	$m_{n,\perp}$ (1) m_n (Γ) $m_{p,\mathrm{hh}}$ (Γ) [100]	SiC (216)	$egin{array}{l} m_{n,\parallel} \ (\mathrm{X}) \ m_{n,\perp} \ (\mathrm{X}) \ m_p \ (\Gamma) \ [100] \end{array}$		
	$m_{p,\text{lh}}(\Gamma)$ [100] $m_{p,\text{so}}(\Gamma)$	BN [70] (194)	m_p ($\bar{\mathbf{K}}$, $\bar{\Gamma}$ - $\bar{\mathbf{K}}$ direction) ^{†a}		
CdS (186)	$m_{n,\perp}$ (Γ , A exciton) $m_{n,\parallel}$ (Γ , A exciton) $m_{p,\perp}$ (Γ , A exciton) $m_{p,\parallel}$ (Γ , A exciton) ^{†a}	bP (64)	m_n (Y) [010] m_n (Y) [001] m_n (Y) [100] m_p (Y) [010] m_p (Y) [001]		

GGA-PBE m* are underestimated

Phys. Rev. B **106**, 045204 (2022)

mBJ m* are (slightly) overestimated

HSE06 m^{*} show best agreement with experiment

HSE06 m^{*} from PT for GaAs with varied %HF

$$E_{\rm xc}^{\rm HSE} = aE_{\rm x}^{\rm HF,SR}(\omega) + (1-a)E_{\rm x}^{\rm PBE,SR}(\omega) + E_{\rm x}^{\rm PBE,LR}(\omega) + E_{\rm c}^{\rm PBE},$$

Phys. Rev. B **106**, 045204 (2022)

Additional contribution due to non-local potential

Schrödinger equation with a local potential

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + V(\mathbf{r})\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

LDA, GGA, mBJ, SCAN

 $\hat{v} = \frac{i}{\hbar}[\hat{H}, \mathbf{r}]$

0.5

0.0

1.0

1.5

E_g (eV)

2.5

2.0

3.0

3.5

Schrödinger equation with a non-local potential

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + \int V(\mathbf{r},\mathbf{r}')\psi(\mathbf{r}') \, d\mathbf{r}' = E\psi(\mathbf{r})$$

Hartree-Fock exchange (spinless), also GW:

$$\hat{H}, \mathbf{r}] = \frac{\hat{p}}{m_0} \qquad \qquad -\int \left[\sum_j \frac{\psi_j^*(\mathbf{r}')\psi_j(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}\right] \psi_i(\mathbf{r}') d\mathbf{r}'$$

$$\hat{v} = \frac{\hat{i}}{\hbar}[\hat{H}, \mathbf{r}] = \frac{\hat{p}}{m_0} + \frac{\hat{i}}{\hbar}[V(\mathbf{r}, \mathbf{r}'), \mathbf{r}]$$

$$\overset{12}{\text{Does it mean that the "true" XC potential should be non-local?}$$

$$Open \text{ question: Why } \sum_{i=1}^{N} v_{c,v}^2 > \sum_{i=1}^{N} p_{c,v}^2$$

$$\overset{12}{\text{Does it mean that the "true" XC potential should be non-local?}$$

$$Open \text{ question: Why } \sum_{i=1}^{N} v_{c,v}^2 > \sum_{i=1}^{N} p_{c,v}^2$$

Proper \hat{v} matrix elements in WIEN2k

Length gauge matrix elements [Asahi et al., Phys. Rev. B 59, 7486 (1999)]:

 $\langle u_{\mathbf{k},l} | u_{\mathbf{k}+\mathbf{q}_{\alpha},n} \rangle$ from wien2wannier

Table 3. Length-gauge $|v_{mn}^{(x)}|^2$ and velocity-gauge $|p_{mn}^{(x)}|^2$ matrix elements (at.u.) in GaAs calculated using WIEN2k (with YSH) and VASP (with HSE06). Due to the non-local potential the velocity and the length gauges are *not* identical. The band degeneracy is given as a superscript in parentheses and the subscripts are explained in Figure 2a. The logarithmic deviation between $\sum |p_{vc}^{(x)}|^2$ and $\sum |v_{vc}^{(x)}|^2$ is given in parentheses (Δ as per Equation (10)).

Transition	$\sum v_{mn}^{(x)} ^2$		$\sum u^{(x)} ^2$	
	WIEN2k	VASP	$\sum p_{mn} $	
$\Gamma_{lh,hh}^{(imes 4)} - \Gamma_c^{(imes 2)}$	0.534	0.541	0.420	
$\Gamma_{so}^{(\times 2)} - \Gamma_c^{(\times 2)}$	0.255	0.256	0.208	
Total	0.789 (+23%)	0.797	0.628	

Computation **IO**, 22 (2022)

Other materials

Computation **I0**, 22 (2022)

Summary

- Computing the full tensor $m^*_{\alpha\beta}$ by polynomial fitting can be non-trivial
- "mstar" gives access to the full tensor $m_{\alpha\beta}^*$ via perturbation theory (all k-points, all bands)
- The perturbation sum converges slowly (especially with *d*-electrons at the band edges)
- GGA-PBE masses are generally too light (E_g error)
- mBJ masses are somewhat heavier (low $p_{c,v}^2$)
- Hybrid (PBE + %HF) masses are most accurate (improved $v_{c,v}^2 > p_{c,v}^2$ due to non-locality of the XC potential)
- WIEN2k can compute velocity matrix elements (incl. non-locality of the XC potential) via a finite difference (~30% correction for $v_{c,v}^2$)

Acknowledgement

mstar in WIEN2k:

- Peter Blaha
- Fabien Tran
- Xavier Rocquefelte

WIEN2WANNIER:

- Elias Assmann
- Jan Kunes
- Philipp Wissgott

mstar60:

Magdalena Laurien

