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Effective mass

E(k0 + q) ≈ E0(k0) +
ℏ2q2

2m*

m* = ℏ2 ( ∂2E
∂k2 )

−1

μ =
eτ
m*

Mobility of charge carriers (Drude model):

Typically Si (conduction band, along <100>): 
GaAs (conduction band): 

m* ∼ 0.9m0
m* ∼ 0.07m0

Fit to parabola

k0−q +q



Effective mass as a tensor

E(k0 + q) ≈ E0(k0) +
ℏ2

4 ∑
α,β

qαqβ

m*αβ
α, β = x, y, z (or 1, 2, 3)

m*αβ = ℏ2 ( ∂2E
∂kα ∂kβ )

−1

Constant energy surface

“Average” conductivity mass: m*
cond

= [
(m*xx)−1 + (m*yy)−1 + (m*zz)−1

3 ]
−1

For Si (conduction band): m* ∼
0.9 0 0
0 0.2 0
0 0 0.2

m0

For GaAs (conduction band): m* ∼ (
0.07 0 0

0 0.07 0
0 0 0.07) m0

generally not zero

need to fit “many” parabolas in 3D k-space

Good news:  is invariant to transformation of coordinates(m*xx)−1 + (m*yy)−1 + (m*zz)−1

Challenge: Get m* without calculating  in the vicinity of E(k) k0



Perturbation theory

Band n

k0

Unperturbed Schrödinger equation: Ĥ(k0) |ψn,k0
⟩ = En(k0) |ψn,k0

⟩

Hnl(k0 + q) = ⟨un,k0
| Ĥ(k0 + q) |ul,k0

⟩ ≈
ℏ

m0
qpnl,k0

+ δnl [En(k0) +
ℏ2qk0

m0
+

ℏ2q2

2m0 ]

Matrix elements of the perturbed Hamiltonian from  (assuming 1D):k ⋅ p

Perturbed eigenvalues:

m0

m*αβ,n,k0

= δαβ +
1

m0 ∑
l≠n

p(α)
nl,k0

p(β)
ln,k0

+ p(β)
nl,k0

p(α)
ln,k0

En,k0
− El,k0

α, β = x, y, z (or 1, 2, 3)

Effective mass (non-degenerate, 3D):

Book: Ashcroft and Mermin

En(k0 + q) ≈ En(k0) +
ℏ(ℏk0 + pnn,k0

)
m0

q +
ℏ2q2

2m0
1 +

2
m0 ∑

l≠n

|pnl,k0
|2

En − El

should be 1/m*

Momentum matrix elements: pnl,k0
= ⟨un,k0

| ̂p |ul,k0
⟩

−q

Bloch function: ψn,k0
(x) = un,k0

(x) eik0x



Band gap issue
GaAs

m0

m*c
≈ 1 +

2(p2
hh,c + p2

lh,c + p2
so,c)

m0(Ec − Ev)
= 1 +

2p2
v,c

m0 Eg

GGA-PBE band gap of GaAs: 0.4 eV

m0

m*c
≈ 1 +

1
m0 ∑

l∈h

p(α)
c,l p(β)

l,c + p(β)
c,l p(α)

l,c
Ec − El

Kim et al. Phys. Rev. B 82, 205212 (2010)



Finite sum over states issue
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• s-, p-, d-, f-LOs are added at high energy (~100 Ry)

•  rule for optical transitions

• Semicore and core states are also important

• GW calculations also “suffer” from the sum over states (e.g., 
ZnO, MoS2)

•
Sternheimer PT avoids  (e.g., Abinit implementation)

Δl ± 1

∑
l≠n

Comp. Phys. Commun. 261, 107648 (2021)



Implementation in WIEN2k (and VASP)

https://github.com/rubel75/mstar



Workflow

(1) Standard SCF calculation

• SOC is important

(2) Expand number of bands (add HELOs). Recalculate DFT orbitals.

• Edit “case.in1(c)”, increase  and execute “x lapw1”; edit “case.inso”, increase  and execute “x 
lapwso”

• Alternatively, execute “x_nmr -mode in1 -nodes 3” and copy “case.in1(c)_nmr” as “case.in1(c)”; edit 
“case.inso”, increase  (get all eigenvalues), execute “x lapw1” and “x lapwso”

(3) Compute momentum matrix elements (same as for “optic”)

• Get the template “case.inop”, edit to enable writing of momentum matrix elements “ ”, 
increase increase  to match the value set in “case.inso”

• Execute optic “x optic -so”; check presence of “case.mommat2*” files

(4) Compute  tensor for each k-point and band index using “mstar”

• Execute mstar “/path/to/mstar case.mommat2up 1e-5” (here  is the search tolerance 
for degenerate states)

• Check output files “minv_ij-up.dat” (  tensor), “minv_pr-up.dat” (principal components of the 

tensor), “minv_c-up.dat” (conductivity mass ), and “minv_d-up.dat” (density of states 

mass )

Emax Emax

Emax = 999 Ry

OFF → ON
Emax

[m0 /m*αβ]−1

ΔE = 10−5 Ha

m0 /m*αβ,n,k0

m0 /⟨m*n,k0
⟩cond

m0 /⟨m*n,k0
⟩dos

Warning: Do not use with hybrid (%HF) functionals in WIEN2k



Demo “mstar” in WIEN2k (also offered as a tutorial)



“mstar60” dataset



GGA-PBE m* are underestimated

p-states

s-states

d-states

Perfect agreement

Phys. Rev. B 106, 045204 (2022)

m0

m*c
≈ = 1 +

2p2
v,c

m0 Eg



mBJ m* are (slightly) overestimated

Phys. Rev. B 106, 045204 (2022)

Kim et al. Phys. Rev. B 82, 205212 (2010)

m0

m*c
≈ = 1 +

2p2
v,c

m0 Eg

Momentum matrix element  for GaAs∑ p2
c,v



HSE06 m* show best agreement with experiment

Phys. Rev. B 106, 045204 (2022)

Kim et al. Phys. Rev. B 82, 205212 (2010)

m0

m*c
≈ = 1 +

2m0 v2
v,c

Eg

increase due to %HF

 velocity matrix elementv2 ≠ p2



HSE06 m* from PT for GaAs with varied %HF

Phys. Rev. B 106, 045204 (2022)

m* reduction due to non-local nature of HF

WIEN2k results optic, BUT band dispersion is correct!

VASP results



Additional contribution due to non-local potential

̂v =
i
ℏ

[Ĥ, r] =
̂p

m0

−∫ ∑
j

ψ*j (r′￼)ψj(r)
|r − r′￼|

ψi(r′￼) dr′￼

Hartree-Fock exchange (spinless), also GW:

−
ℏ2

2m
∇2ψ (r) + ∫ V(r, r′￼)ψ (r′￼) dr′￼= Eψ (r)−

ℏ2

2m
∇2ψ (r) + V(r)ψ (r) = Eψ (r)

Schrödinger equation with a local potential Schrödinger equation with a non-local potential

̂v =
i
ℏ

[Ĥ, r] =
̂p

m0
+

i
ℏ

[V(r, r′￼), r]

LDA, GGA, mBJ, SCAN

increase due to i[V(r, r′￼), r]/ℏ

Does it mean that the “true” XC 
potential should be non-local?

Open question: Why ∑ v2
c,v > ∑ p2

c,v?



Proper HF optical matrix elements in WIEN2k

Computation 10, 22 (2022)

Proper  matrix elements in WIEN2k̂v
Length gauge matrix elements [Asahi et al., Phys. Rev. B 59, 7486 (1999)]:

    for very small v(α)
nl ≈

1
q

⟨uk,l |uk+qα,n⟩ [En(k + qα) − El(k)] q

 from wien2wannier⟨uk,l |uk+qα,n⟩

k

E

En(k + qα)

El(k)
qα

GaAs



Proper HF optical matrix elements in WIEN2k

Computation 10, 22 (2022)

 enhancement = stronger 
optical transitions & more 

efficient dielectric screening

|v |2

Other materials
GaN

Monolayer MoS2

(CH3NH3)PbI3

Monolayer MoS2

GaN



Summary

• Computing the full tensor  by polynomial fitting can be non-trivial

• “mstar” gives access to the full tensor  via perturbation theory 

(all k-points, all bands)

• The perturbation sum converges slowly (especially with d-electrons 
at the band edges)

• GGA-PBE masses are generally too light (  error)

• mBJ masses are somewhat heavier (low )

• Hybrid (PBE + %HF) masses are most accurate (improved  
due to non-locality of the XC potential)

• WIEN2k can compute velocity matrix elements (incl. non-locality of 
the XC potential) via a finite difference (~30% correction for )

m*αβ

m*αβ

Eg

p2
c,v

v2
c,v > p2

c,v

v2
c,v
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