

Xavier Rocquefelte WIEN2k workshop 2024 – ICTP Trieste (Italy)

Talk constructed using the following documents:

<u>Slides of:</u>

- Robert Laskowski, Stefaan Cottenier, Peter Blaha and Georg Madsen

Notes of:

- Pavel Novak (Calculation of spin-orbit coupling) http://www.wien2k.at/reg_user/textbooks/

Books:

- WIEN2k userguide, ISBN 3-9501031-1-2
- Electronic Structure: Basic Theory and Practical Methods, Richard M. Martin ISBN 0 521 78285 6
- Relativistic Electronic Structure Theory. Part 1. Fundamentals, Peter Schewerdtfeger, ISBN 0 444 51249 7

<u>web:</u>

-wienlist digest - http://www.wien2k.at/reg_user/index.html

- wikipedia ...

Few words about Special Theory of Relativity

Light Composed of photons (NO Mass) Speed of light = constant Atomic units: $\hbar = m_e = e = 1$ $c \approx 137$ au

Matter

Composed of atoms (MASS)

Lorentz Factor (measure of the relativistic effects)

$$\gamma = \frac{1}{\sqrt{1 - \left(\frac{\nu}{c}\right)^2}} \ge 1$$

Relativistic mass: $M = \gamma m$ (m: rest mass) Momentum: $p = \gamma mv = Mv$ Total energy: $E^2 = p^2c^2 + m^2c^4$ $E = \gamma mc^2 = Mc^2$

Few words about Special Theory of Relativity

Few words about Special Theory of Relativity

1) The mass-velocity correction

Relativistic increase in the mass of an electron with its velocity (when $v_e \rightarrow c$)

2) The Darwin term

It has no classical relativistic analogue

Due to small and irregular motions of an electron about its mean position (*Zitterbewegung*)

3) The spin-orbit coupling

It is the interaction of the spin magnetic moment (s) of an electron with the magnetic field induced by its own orbital motion (l)

4) Indirect relativistic effect

The change of the electrostatic potential induced by relativity is an indirect effect of the core electrons on the valence electrons

One electron radial Schrödinger equation

HARTREE ATOMIC UNITS

$$H_{S}\Psi = \left[-\frac{1}{2}\nabla^{2} + V\right]\Psi = \mathcal{E}\Psi$$

$$H_{S}\Psi = \left[-\frac{\hbar^{2}}{2m_{e}}\nabla^{2} + V\right]\Psi = \mathcal{E}\Psi$$

In a spherically symmetric potential

$$V = -\frac{Ze^2}{4\pi\varepsilon_0 r}$$

$$\Psi_{n,l,m} = R_{n,l}(r)Y_{l,m}(\theta,\varphi)$$

$$\nabla^{2} = \frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial}{\sin(\theta)}\frac{\partial}{\partial \theta}\left[\sin(\theta)\frac{\partial}{\partial \theta}\right] + \frac{1}{r^{2}}\frac{1}{\sin^{2}(\theta)}\left(\frac{\partial^{2}}{\partial \varphi^{2}}\right)$$

$$\cdot \frac{1}{2r^{2}}\frac{d}{dr}\left(r^{2}\frac{dR_{n,l}}{dr}\right) + \left[V + \frac{l(l+1)}{2r^{2}}\right]R_{n,l} = \varepsilon R_{n,l} \qquad -\frac{\hbar^{2}}{2m_{e}}\frac{1}{r^{2}}\frac{d}{dr}\left(r^{2}\frac{dR_{n,l}}{dr}\right) + \left[V + \frac{\hbar^{2}}{2m_{e}}\frac{l(l+1)}{r^{2}}\right]R_{n,l} = \varepsilon R_{n,l}$$

Dirac Hamiltonian: a brief description

Dirac relativistic Hamiltonian provides a quantum mechanical description of electrons, consistent with the theory of special relativity.

(2×2) Pauli spin matrices

Dirac equation: H_D and Ψ are 4-dimensional

 Ψ is a four-component single-particle wave function that describes spin-1/2 particles.

 Φ and χ are time-independent two-component spinors describing the spatial and spin-1/2 degrees of freedom

Leads to a set of coupled equations for Φ and χ :

$$c(\sigma \cdot \vec{p}) \chi = (\varepsilon - V - m_e c^2) \phi$$
$$c(\sigma \cdot \vec{p}) \phi = (\varepsilon - V + m_e c^2) \chi$$

Dirac equation: H_D and Ψ are 4-dimensional

$$\Psi = \begin{pmatrix} \Phi \\ \chi \end{pmatrix} = \begin{pmatrix} g_{n\kappa}(r) Y_{\kappa\sigma} \\ -i f_{n\kappa}(r) Y_{\kappa\sigma} \end{pmatrix}$$

 $g_{n\kappa}$ and $f_{n\kappa}$ are Radial functions $Y_{\kappa\sigma}$ are angular-spin functions

$$j = l + s/2$$

$$\kappa = -s(j + 1/2)$$

$$s = +1, -1$$

Dirac equation in a spherical potential

For a spherical potential (i.e. V(r)

The resulting equations for the radial functions $(g_{n\kappa} \text{ and } f_{n\kappa})$ are simplified if we define: Energy: $\varepsilon' = \varepsilon - m_e c^2$ Radially varying mass: $M_e(r) = m_e + \frac{\varepsilon' - V(r)}{2c^2}$ Then the coupled equations can be written in the form of the radial eq.: $-\frac{\hbar^{2}}{2M_{e}}\frac{1}{r^{2}}\frac{d}{dr}\left(r^{2}\frac{dg_{n\kappa}}{dr}\right)+\left|V+\frac{\hbar^{2}}{2M_{e}}\frac{l(l+1)}{r^{2}}\right|g_{n\kappa}-\frac{\hbar^{2}}{4M_{e}^{2}c^{2}}\frac{dV}{dr}\frac{dg_{n\kappa}}{dr}-\frac{\hbar^{2}}{4M_{e}^{2}c^{2}}\frac{dV}{dr}\frac{(1+\kappa)}{r}g_{n\kappa}=\varepsilon'g_{n\kappa}$ Darwin Spin-orbit Mass-velocity effect term coupling One electron radial $-\frac{\hbar^2}{2m_a}\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR_{n,l}}{dr}\right) + \left|V + \frac{\hbar^2}{2m_a}\frac{l(l+1)}{r^2}\right|R_{n,l} = \varepsilon R_{n,l}$ Schrödinger equation in a spherical potential

Note that: $\kappa(\kappa+1) = l(l+1)$

Dirac equation in a spherical potential

For a spherical potential (i.e. V(r)

The resulting equations for the radial functions $(g_{n\kappa} \text{ and } f_{n\kappa})$ are simplified if we define:

Energy: $\varepsilon' = \varepsilon - m_e c^2$ Radially varying mass: $M_e(r) = m_e + \frac{\varepsilon' - V(r)}{2c^2}$

Then the coupled equations can be written in the form of the radial eq.:

$$-\frac{\hbar^{2}}{2M_{e}}\frac{1}{r^{2}}\frac{d}{dr}\left(r^{2}\frac{dg_{n\kappa}}{dr}\right) + \left[V + \frac{\hbar^{2}}{2M_{e}}\frac{l(l+1)}{r^{2}}\right]g_{n\kappa} - \frac{\hbar^{2}}{4M_{e}^{2}c^{2}}\frac{dV}{dr}\frac{dg_{n\kappa}}{dr} - \frac{\hbar^{2}}{4M_{e}^{2}c^{2}}\frac{dV}{dr}\frac{(1+\kappa)}{r}g_{n\kappa} = \varepsilon'g_{n\kappa}$$
and
$$\int Darwin term \quad Spin-orbit coupling$$

$$\frac{df_{nk}}{dr} = \frac{1}{\hbar c} \left(V - \varepsilon' \right) g_{n\kappa} + \frac{(\kappa - 1)}{r} f_{n\kappa}$$

Due to spin-orbit coupling, Ψ is not an eigenfunction of spin (s) and angular orbital moment (l).
 Instead the good quantum numbers are j and κ
 Note that: κ(κ+1)=l(l+1)

No approximation has been made so far

Dirac equation in a spherical potential

Scalar relativistic approximation

Approximation that the spin-orbit term is small \Rightarrow neglect SOC in radial functions (and treat it by perturbation theory) No SOC \Rightarrow Approximate radial functions: $g_{n\kappa} \rightarrow \tilde{g}_{nl}$ $f_{n\kappa} \rightarrow \tilde{f}_{nl}$ $-\frac{\hbar^2}{2M_e}\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\tilde{g}_{nl}}{dr}\right) + \left[V + \frac{\hbar^2}{2M_e}\frac{l(l+1)}{r^2}\right]\tilde{g}_{nl} - \frac{\hbar^2}{4M_e^2c^2}\frac{dV}{dr}\frac{d\tilde{g}_{nl}}{dr} = \varepsilon'\tilde{g}_{nl}$ and $\tilde{f}_{nl} = \frac{\hbar}{2M_ec}\frac{d\tilde{g}_{nl}}{dr}$ with the normalization condition: $\int (\tilde{g}_{nl}^2 + \tilde{f}_{nl}^2)r^2dr = 1$ \Rightarrow The four-component wave function is now written as: $\tilde{\Psi} = \begin{pmatrix} \tilde{\Phi} \\ \tilde{\chi} \end{pmatrix} = \begin{pmatrix} \tilde{g}_{nl}(r) Y_{lm} \\ -i \tilde{f}(r) Y \end{pmatrix}$ \Rightarrow Inclusion of the spin-orbit coupling in "second variation" (on the large component only)

$$H\widetilde{\psi} = \varepsilon\widetilde{\psi} + H_{SO}\widetilde{\psi}$$

 $\widetilde{\Phi}$ is a pure spin state

 $\widetilde{\chi}$ is a mixture of up and down spin states

with

$$H_{SO} = \frac{\hbar^2}{4M_e^2 c^2} \frac{1}{r} \frac{dV}{dr} \begin{pmatrix} \vec{\sigma} \vec{l} & 0\\ 0 & 0 \end{pmatrix}$$

Relativistic effects in a solid

III. Implementation

For a molecule or a solid:

Relativistic effects originate deep inside the core.

It is then sufficient to solve the relativistic equations in a spherical atomic geometry (inside the atomic spheres of WIEN2k).

Justify an implementation of the relativistic effects only inside the muffin-tin atomic spheres

Treatment of the core electrons

THE R. D. O. W. D.

Core states: fully occupied → spin-compensated Dirac equation (include SOC)

Atomic sphere (RMT) Region

Core electrons « Fully » relativistic

Spin-compensated Dirac equation For spin-polarized potential, spin up and spin down are calculated separately, the density is averaged according to the occupation number specified in case.inc file.

 $\kappa = -s(j+1/2)$ occupation **= + s**/2 s=-1 s=+1 s=-1 s=+1 s=-1 s=+1 1/2 -1 0 2 S 1/2 3/2 -2 2 1 1 4 р 2 3/2 5/2 2 -3 d 4 6 5/2 7/2 f 3 3 -4 6 8

case.inc for Au atom

	17 0.	.00 0
$1s^{1/2} \rightarrow$	1,-1, <mark>2</mark>	(n,к, <mark>оссир</mark>)
2s ^{1/2}	2,-1, <mark>2</mark>	(n,к, <mark>оссир</mark>)
$2p^{1/2} \rightarrow$	2, 1, <mark>2</mark>	(n,κ, <mark>occup</mark>)
$2p^{3/2} \rightarrow$	2,-2, <mark>4</mark>	(n,κ, <mark>occup</mark>)
3s ^{1/2}	3,-1, <mark>2</mark>	(n,к, <mark>оссир</mark>)
3p ^{1/2}	3, 1, <mark>2</mark>	(n,κ, <mark>occup</mark>)
3p ^{3/2}	3,-2, <mark>4</mark>	(n,к, <mark>оссир</mark>)
$3d^{3/2} \rightarrow$	3, 2, <mark>4</mark>	(n,κ, <mark>occup</mark>)
$3d^{5/2} \rightarrow$	3,-3, <mark>6</mark>	(n,к, <mark>оссир</mark>)
4 <mark>s</mark> 1/2	4,-1, <mark>2</mark>	(n,κ, <mark>occup</mark>)
4p ^{1/2}	4, 1, <mark>2</mark>	(n,к, <mark>оссир</mark>)
4p ^{3/2}	4,-2, <mark>4</mark>	(n,к, <mark>оссир</mark>)
4d ^{3/2}	4, 2, <mark>4</mark>	(n,к, <mark>оссир</mark>)
4d ^{5/2}	4,-3, <mark>6</mark>	(n,к, <mark>оссир</mark>)
5s ^{1/2}	5,-1, <mark>2</mark>	(n,κ, <mark>occup</mark>)
$4^{f^{5/2}}$ →	4, 3, <mark>6</mark>	(n,к, <mark>оссир</mark>)
$4f^{7/2} \rightarrow$	4,-4, <mark>8</mark>	(n,κ, <mark>occup</mark>)
	0	· · · ·

Treatment of the valence electrons

Valence electrons INSIDE atomic spheres are treated within scalar relativistic approximation [1] if RELA is specified in case.struct file (by default).

Title

F LAI	TICE, NON	EQUIV.A	TOMS:	1 225 Fi	m-3m
MODE OF	CALC=RE	LA unit	=bohr		
7.67000	0 7.670000	7.670000	90.00000	90.00000	90.00000
ATOM 1:	X=0.000000	0 Y=0.0000	00000 Z=0.0	00000000	
	MULT= 1	ISPI	LIT= 2		
Aul	NPT= 781	R0=0.0000	00500 RMT=	2.6000	Z: 79.0
LOCAL ROT	MATRIX:	1.0000000	0.0000000	0.0000000	
		0.0000000	1.0000000	0.0000000	
		0.0000000	0.0000000	1.0000000	
48	NUMBER OF S	YMMETRY OF	PERATIONS		

- no κ dependency of the wave function, (n,l,s) are still good quantum numbers
- all relativistic effects are included except SOC
- small component enters normalization and calculation of charge inside spheres
- augmentation with large component only
- SOC can be included in « second variation »

[1] Koelling and Harmon, J. Phys. C (1977)

Valence electrons in interstitial region are treated classically

I-E W 2k

Treatment of the valence electrons

SOC is added in a second variation (lapwso):

- First diagonalization (lapw1): $H_1\Psi_1 = \varepsilon_1\Psi_1$
- Second diagonalization (lapwso): $(H_1 + H_{SO})\Psi = \mathcal{E}\Psi$

The second equation is expanded in the basis of first eigenvectors (Ψ_1)

$$\sum_{i}^{N} \left(\delta_{ij} \varepsilon_{1}^{j} + \left\langle \Psi_{1}^{j} \right| H_{SO} \left| \Psi_{1}^{i} \right\rangle \right) \left\langle \Psi_{1}^{i} \right| \Psi \right\rangle = \varepsilon \left\langle \Psi_{1}^{j} \right| \Psi \right\rangle$$

Atomic sphere (RMT) Region Valence electrons Scalar relativistic (no SOC)

sum include both up/down spin states

 \rightarrow N is much smaller than the basis size in lapw1

• SOC is active only inside atomic spheres, only spherical potential (V_{MT}) is taken into account, in the polarized case spin up and down parts are averaged.

Eigenstates are not pure spin states, SOC mixes up and down spin states

• Off-diagonal term of the spin-density matrix is ignored. It means that in each SCF cycle the magnetization is projected on the chosen direction (from case.inso)

V_{MT}: Muffin-tin potential (spherically symmetric)

INCOMPANY

Controlling spin-orbit coupling in WIEN2k

- Do a regular scalar-relativistic "scf" calculation
- save_lapw
- initso_lapw
 - case.inso:

WFFIL	
4 1 0	llmax, ipr, kpot
-10.0000 1.50000	emin,emax (output energy window)
0. 0. 1.	direction of magnetization (lattice vectors)
NX	number of atoms for which RLO is added
NX1 -4.97 0.0005	atom number,e-lo,de (case.in1), repeat NX times
0 0 0 0 0	number of atoms for which SO is switch off; atoms

• case.in1(c):

()							
2	0.30	0.005	CONT 1				
0	0.30	0.000	CONT 1				
K-VEC	CTORS FROM	UNIT:4	-9.0	4.5	65	emin/emax/nband	

• symmetso (for spin-polarized calculations only)

* run(sp)_lapw -so <----- -so switch specifies that scf cycles will include SOC</pre>

Controlling spin-orbit coupling in WIEN2k

V2web

stop SC

stop mil full diag

testpara testpara The w2web interface is helping you

Controlling spin-orbit coupling in WIEN2k

dit .mac estpara estpara1 astpara2

> The w2web interface is helping you

Co-hcp.in2c has been create	ed and a second s
edit Co-hcp.inso Select m	agnetization direction, RLOs, SO on/off
edit Co-hcp.in1 set larger	EMAX in energy window
This is a spin-polarized syst	tem. SO may reduce symmetry.
x symmetso Determines	symmetry in spinpolarized case
edit Co-hcp.outsymso Viev	w Co-hcp.outsymso
A new setup for SO calculati	ions has been created (_so). If you commit the next step will create new Co-hcp.struct, in1, in2c, inc, clmsum/up/dn files. PLEASE "save_lapw" any previous cald
Description of the second fill	
Prepare new input nies	
The number of symmetry op	erations may have changed, then you must run KGEN.
The number of symmetry op x kgen Generate k-mesh	erations may have changed, then you must run KGEN. h with proper SO-symmetry
The number of symmetry op x kgen_Generate k-mesh edit Co-hcp.klist_view Co-	erations may have changed, then you must run KGEN. n with proper SO-symmetry -hcp.klist
The number of symmetry op x kgen Generate k-mesh edit Co-hcp.klist view Co-	erations may have changed, then you must run KGEN. n with proper SO-symmetry -hcp.klist
The number of symmetry op x kgen Generate k-mesh edit Co-hcp.klist view Co-	erations may have changed, then you must run KGEN. n with proper SO-symmetry -hcp.klist

Relativistic effects: Illustration

Relativistic effects: Illustration

Au: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶ 4f¹⁴ 5d¹⁰ 6s¹

Lorentz factor (γ) 10 9 LAGAST « Non-relativistic » 8 particle: $\gamma = 1$ 5 Au(1s) H(1s) 4 3 2 100 20 40 60 80 120 0 Speed (v) $c \approx 137 au$ 1]

$$\nu = \frac{1}{\sqrt{1 - \left(\frac{\nu}{c}\right)^2}} \ge 1$$

(1) Relativistic orbital contraction

Speed of the 1s electron (Bohr model):

$$v_e \propto \frac{Z}{n} \begin{cases} \text{H}: v_e(1s) = 1 \text{ au} \quad \Rightarrow \quad \gamma = 1.00003\\ \text{Au}: v_e(1s) = 79 \text{ au} \quad \Rightarrow \quad \gamma = 1.22 \end{cases}$$

(1) Relativistic orbital contraction

(1) Relativistic orbital contraction

III. Implementation

INCOMP

INCOMP

(1) Relativistic orbital contraction

Direct relativistic effect (mass enhancement) \rightarrow contraction of 0.46% only However, the relativistic contraction of the 6s orbital is large (>20%) ns orbitals (with n > 1) contract due to orthogonality to 1s

(1) Relativistic orbital contraction

Let's travel to Tarragona to understand!

Human pyramid at Tarragona (Spain) Santa Tecla festival

Santa Tecla festival

(2) Spin-orbit splitting of p states

• $p_{3/2}$ (κ =-2): nearly same behavior than non-relativistic p-state

III. Implementation

(2) Spin-orbit splitting of p states

• $p_{1/2}$ (κ =1): markedly different behavior than non-relativistic p-state $g_{\kappa=1}$ is non-zero at nucleus

(2) Spin-orbit splitting of p states

III. Implementation

(3) Orbital expansion: Au(d) states

(3) Orbital expansion: Au(d) states

W 2k

(3) Orbital expansion: Au(d) states

Relativistic effects: Illustration

Au: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶ 4f¹⁴ 5d¹⁰ 6s¹

Atomic spectra of gold

III. Implementation

Ag – Au: the differences (DOS & optical prop.)

T E N 2k

Relativistic semicore states: p^{1/2} orbitals

Energy vs. basis size

DOS with and without $p^{1/2}$

J.Kuneš, P.Novak, R.Schmid, P.Blaha, K.Schwarz, Phys.Rev.B. 64, 153102 (2001)

W 2k

SOC in magnetic systems

SOC couples magnetic moment to the lattice

direction of the exchange field matters (input in case.inso)

Symmetry operations acts in real and spin space

•number of symmetry operations may be reduced (reflections act differently on
spins than on positions)

time inversion is not symmetry operation (do not add an inversion for klist)

initso_lapw (must be executed) detects new symmetry setting

	Direction of magnetization							
	[100]	[010]	[001] [110]					
1	Α	Α	Α	Α				
m _x	Α	В	В					
m _y	В	Α	В	-				
2 _z	В	В	Α	В				

Relativity in WIEN2k: Summary

WIEN2k offers several levels of treating relativity: non-relativistic: select NREL in case.struct (not recommended) standard: fully-relativistic core, scalar-relativistic valence mass-velocity and Darwin s-shift, no spin-orbit interaction "fully"-relativistic:

adding SO in "second variation" (using previous eigenstates as basis) adding $p^{1/2}$ LOs to increase accuracy (caution!!!)

× lapw1	(increase E-max for more eigenvalues, to have
× lapwso	basis for lapwso)
x lapw2 -so -c	SO ALWAYS needs complex lapw2 version

Non-magnetic systems:

SO does NOT reduce symmetry. initso_lapw just generates case.inso and case.in2c.

Magnetic systems:

symmetso detects proper symmetry and rewrites case.struct/in*/clm*

Relativistic effects

Magnetic couplings

Xavier Rocquefelte WIEN2k workshop 2024 – ICTP Trieste (Italy)

Dalton Transactions

To learn and practice

RSCPublishing

PERSPECTIVE

View Article Online View Journal | View Issue

Magnetic properties and energy-mapping analysis

Cite this: Dalton Trans., 2013, 42, 823

Hongjun Xiang,*^a Changhoon Lee,†^b Hyun-Joo Koo,^c Xingao Gong^a and Myung-Hwan Whangbo*^b

M.-H. Whangbo

The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, *i.e.*, the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii–Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energymapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin–orbit coupling (SOC)

Let's talk about order of magnitude

Band structure & ARPES of graphene

Magnetic dispersion of CuO at 6K (neutron scattering)

https://doi.org/10.1103/PhysRevB.97.144401

Collinear Magnetism

Magnetic susceptibility of a ferromagnetic (FM) compound

Collinear Magnetism

Magnetic susceptibility of an antiferromagnetic (AFM) compound

Collinear Magnetism

Non-Collinear Magnetism

AFM with 2 subnetworks having different magnetization directions

weak ferromagnetism

Frustrated AFM

Topologic frustration

FM-AFM competition

 $J_1: FM \qquad J_2: AFM$

Non-Collinear Magnetism

Estimation of J can be done by mapping energy differences onto the general Heisenberg Spin Hamiltonian:

Illustration: 1D system – Method A

Estimation of J_1 and J_2

 $a_{FM} = a_{cryst}$

3 DFT calculations using same supercell same symmetry same precision

Illustration: 1D system – Method B

II. Magnetic coupling J

LANGSTON

METHOD A

PRL 106, 177203 (2011)

Magnetic Couplings in CsV2O5: A New Picture

A. Saúl^{1,*} and G. Radtke²

¹CINaM, UPR 3118 CNRS, Campus de Luminy, case 913, 13288 Marseille cedex 9, France ²IM2NP, UMR 6242 CNRS, Faculté des Sciences de Saint-Jérôme, Case 262, 13397 Marseille cedex 20, France (Received 7 March 2011; published 29 April 2011)

FIG. 2 (color online). Graphical representation of the results obtained by using the least-squares fit procedure: For each configuration, the DFT relative energy $\epsilon_{\alpha}^{\text{DFT}} \cdot \epsilon_{0}$ is represented as a function of the optimized Ising energy. The best fit values are shown in the inset. According to the convention used in Eq. (1), positive couplings correspond to AFM interactions.

CuO

Cu²⁺ (d⁹)

magnetic orb. $d_{x^2-y^2}$

PRL 106, 026401 (2011)

PHYSICAL REVIEW LETTERS

week ending 14 JANUARY 2011

High-T_c Ferroelectricity Emerging from Magnetic Degeneracy in Cupric Oxide

Gianluca Giovannetti,^{1,2} Sanjeev Kumar,^{3,4} Alessandro Stroppa,⁵ Jeroen van den Brink,³ Silvia Picozzi,¹ and José Lorenzana²

¹Consiglio Nazionale delle Ricerche CNR-SPIN L'Aquila, Italy

²ISC-CNR, Dipartimento di Fisica, Università "La Sapienza", Piazzale Aldo Moro 5, Roma, Italy

³Institute for Theoretical Solid State Physics, IFW Dresden, 01171 Dresden, Germany

⁴Indian Institute of Science Education and Research Mohali, MGSIPAP Complex, Sector 26, Chandigarh 160019, India

⁵CNISM- Department of Physics, University of L'Aquila, Via Vetoio 10, 67010 Coppito, L'Aquila, Italy

(Received 26 July 2010; published 12 January 2011)

TABLE I. Exchange coupling parameters (meV) calculated within SGGA + U and hybrid functional calculations. The structure allows for $J_a \neq J_d$ and $J_b \neq J_c$ but we take them equal for simplicity. This is inessential for our conclusions. For the notations see Fig. 1 and Ref. [8].

	J_z	J_x	J_{2a}	J_{2b}	$J_a = J_d$	$J_b = J_c$	J_y
$U_{\rm eff} = 5.5$	107.76	-15.76	6.89	16.18	7.98	15.82	-21.48
$\alpha = 0.15$	120.42	-24.33	4.99	14.27	4.19	13.17	-23.02

CuO

Cu²⁺ (d⁹)

magnetic or $b.d_{x^2-y^2}$

METHOD A

TABLE I. Exchange coupling parameters (meV) calculated within SGGA + U and hybrid functional calculations. The structure allows for $J_a \neq J_d$ and $J_b \neq J_c$ but we take them equal for simplicity. This is inessential for our conclusions. For the notations see Fig. 1 and Ref. [8].

2							
	J_z	J_x	J_{2a}	J_{2b}	$J_a = J_d$	$J_b = J_c$	J_y
$U_{\rm eff} = 5.5$	107.76	-15.76	6.89	16.18	7.98	15.82	-21.48
$\alpha = 0.15$	120.42	-24.33	4.99	14.27	4.19	13.17	-23.02

 $J_{z} J_{2a} J_{z} J_{$

ture allows for $J_a \neq J_d$ and $J_b \neq J_c$ but we take them equal for simplicity. This is inessential for our conclusions. For the notations see Fig. 1 and Ref. [8].

	J_z	J_x	J_{2a}	J_{2b}	$J_a = J_d$	$J_b = J_c$	J_y
$U_{\rm eff} = 5.5$	107.76	-15.76	6.89	16.18	7.98	15.82	-21.48
$\alpha = 0.15$	120.42	-24.33	4.99	14.27	4.19	13.17	-23.02

II. Magnetic co

INCOMPANY

PRL 107, 239701 (2011)

PHYSICAL REVIEW LETTERS

Comment on "High-*T_c* Ferroelectricity Emerging from Magnetic Degeneracy in Cupric Oxide"

METHOD A

The origin of the multiferroicity in cupric oxide was addressed in a recent Letter [1], in which Giovannetti et al. performed classical Monte Carlo simulations on a 3D Hamiltonian to estimate the spin-current susceptibility χ_{ii} for the CuO structure. However, they used incorrect exchange parameters J_{ii} as inputs. Giovannetti *et al.* [2] have done the following. (i) They introduced a new ferromagnetic (FM) J parameter, namely, J_{y} , but neglected an important antiferromagnetic (AFM) supersuperexchange interaction with a dihedral Cu-O-O-Cu angle of 0°, previously defined as J_{nnn} in Ref. [3] and J_{2a} in Ref. [4]. (ii) They mentioned that they used the notations of Ref. [4], which is not true and leads to severe confusions. In particular, they interchanged J_a with J_b , J_{2b} with J_{2a} , and J_{2c} with J_{2h} . (iii) They used incorrect coefficients for their J_h parameter in their energy expressions (twice too much). (iv) They performed their mapping analysis such that the number of equations is equal to the number of unknown parameters, which does not guarantee the robustness of the so-obtained J parameters.

We used for our total energy calculations the same conditions as specified in Ref. [1]. However, we considered 23 different magnetic states and a least-squares fit procedure and not only a minimal set of equations as in Ref. [1]. The discussion in the present Comment is based on the

FIG. 1 (color online). Graphical representation of fit#1 and fit#2 results. ε_{DFT} and ε_J are, respectively, the relative energies (with respect to the ground state, labeled "AF1" in Ref. [1]) deduced from the density-functional theory (DFT) calculations and the *J* parameters.

II. Magnetic co

INCOMPANY

PRL 107, 239701 (2011)

PHYSICAL REVIEW LETTERS

Comment on "High-*T_c* Ferroelectricity Emerging from Magnetic Degeneracy in Cupric Oxide"

METHOD A

The origin of the multiferroicity in cupric oxide was addressed in a recent Letter [1], in which Giovannetti *et al.* performed classical Monte Carlo simulations on a 3D Hamiltonian to estimate the spin-current susceptibility χ_{jj} for the CuO structure. However, they used incorrect exchange parameters J_{ij} as inputs. Giovannetti *et al.* [2] have done the following. (i) They introduced a new ferromegnetic (FM). L parameter parally, L_{j} but performed

TABLE I. Exchange-coupling parameters (meV) calculated using DFT + U calculations.

Refs. [4,5]	J_z	J_x	J_a	J_b	J_{2a}	J_{2b}	J_{2c}	J_y
Ref. [1]	J_z	J_x	J_b	J _a	•••	J_{2a}	J_{2b}	J_y
$d_{\rm Cu-Cu}$ (Å)	3.748	3.173	2.901	3.083	5.801	5.129	4.684	3.423
J_{ij} fit#1	99.53	-13.04	23.13	5.07	• • •	6.23	14.80	-19.42
J_{ij} fit#2	107.12	-3.65	8.32	-2.92	20.05	10.11	-1.04	0.77

Illustration: NiO (Ex. 13 & 14)

Experiment data:

Ni²⁺: d⁸ electronic configuration Octahedral environment

Rock-salt structure Space group: Fm-3m (#225)

Optical gap: 4-4.3 eV

Magnetic properties: •AFM order •μ(Ni) = 1.7-1.9 μ_B

Illustration: NiO (Ex. 13 & 14)

Experiment data:

Ni²⁺: d⁸ electronic configuration Octahedral environment

Rock-salt structure Space group: Fm-3m (#225)

Optical gap: 4-4.3 eV

Magnetic properties: •AFM order •μ(Ni) = 1.7-1.9 μ_B

Illustration: NiO (Ex. 13 & 14)

PHYSICAL REVIEW B

VOLUME 6, NUMBER 9

1 NOVEMBER 1972

Measurement of Spin-Wave Dispersion in NiO by Inelastic Neutron Scattering and Its Relation to Magnetic Properties

> M. T. Hutchings Brookhaven National Laboratory,* Upton, New York 11973 and AERE Harwell, Didcot, Berkshire, England[†]

> > and

E. J. Samuelsen[‡] Brookhaven National Laboratory,* Upton, New York 11973 (Received 12 June 1972)

Inelastic neutron scattering techniques have been used to measure the spin-wave dispersion relations at 78 °K in the fcc antiferromagnet NiO. The energy dispersion has a steep initial slope (~250 meVÅ) and a high maximum energy (~117 meV) and is further characterized by a relatively low zone boundary energy in certain directions. The exchange parameters defined by $\mathfrak{K}^{1,2} = J_{i} \tilde{S}^{(1)} \cdot \tilde{S}^{(2)}$ were determined by fitting the theoretical expression for the spin-wave energies to the experimental data corrected for instrumental resolution effects. The predominant interaction is a large antiferromagnetic exchange $J_2 = 221 \,^{\circ}$ K (19.01 meV) between next-nearest neighbors, which are linked by a 180° superexchange path. The interaction between nearest neighbors, linked by a 90° $Ni^{2+}-O^{2-}-Ni^{2+}$ configuration, is much smaller and ferromagnetic in sign, $J_1 = -15.9$ °K (-1.37 meV). A consequence of the relatively small value of J_1 is that the spin waves from the four domains present in the sample can only be resolved in a limited region of reciprocal space. These values of exchange interactions are in accord with simple ideas of covalency and overlap, and the results emphasize the behavior of NiO as a weakly covalent insulator. The density of magnon states, estimates of the transition temperature, and several thermomagnetic properties of NiO have been calculated from the measured exchange parameters using molecular field and random-phase-approximation Green's-function formulas.

nn $J_1 = -1.37 \text{ meV} (FM)$

Ni-Ni = 2.966 Å

nnn J₂ = 19.01 meV (AFM) Ni-Ni = 4.195 Å

Illustration: NiO (Ex. 13 & 14)

Learn how to estimate the magnetic coupling J

Learn 2 different approaches to extract J:

(A) Energy-mapping analysis based on two ordered spin states (FM and AFM)

(B) Energy-mapping analysis based on four ordered spin states (uu, dd, ud and du)
 Ref. Dalton Trans., 2013, 42, 823

Spin hamiltonian: $\widehat{H}_{spin} = \sum_{i < j} J_{ij} \vec{S}_i \vec{S}_j$

(A) $J_{ij} = (E_{FM} - E_{AFM})/2N$ with N: number of J_{ii}

(B)
$$J_{ij} = \frac{E_{uu} + E_{dd} - E_{ud} - E_{du}}{4S^2}$$

with S: Total spin of Ni in NiO

J₁: nearest-neighbors exchange coupling

J₂: next nearest-neighbors exchange coupling

Exp. Values from neutron scattering: $J_1 = -1.37 \text{ meV}$ and $J_2 = +19.01 \text{ meV}$ FM: J < 0</td>AFM: J > 0

Illustration: NiO (Ex. 13 & 14)

Figure 4.4 Basic spin ordering in the TM monoxides MnO, FeO, CoO and NiO. The spins are ferromagnetically ordered within {111} planes, and AF in neighboring {111} planes in all four compounds. The orientation of the spins with respect to the crystallographic axes, however, is different. In NiO

and MnO, the spins are oriented in $(11\overline{2})$ directions (as is actually shown in the above figure), in FeO in the [111] direction, and in CoO slightly tilted away from the cubic axes. All materials have structures that are slightly distorted to lower than cubic symmetries, which are consistent with these orientations.
Illustration: NiO (Ex. 13 & 14)

LAGASS

x nn -> 2

vi NiO.outputnn

ATOM:	1	EQUIV.	1	Ni1	AT Ø	.00000	0.0	0000	0.00000					
RMT (1)=	2.05000	AND	RMT(3)=	1.77000									
SUMS	TO 3	.82000	LT.	NN-DIST=	3.96370									
ATOM:	3	01	A	T -0.2500	-0.2500	0.7500	IS	3.9637	0 A.U.	2.09750	ANG			
ATOM:	3	01	A	T 0.2500	0.2500	-0.7500	IS	3.9637	0 A.U.	2.09750	ANG	180.00		
ATOM:	3	0 1	A	T -0.2500	0.7500	-0.2500	IS	3.9637	0 A.U.	2.09750	ANG	90.00	90.00	
ATOM:	3	0 1	A	T -0.7500	0.2500	0.2500	IS	3.9637	0 A.U.	2.09750	ANG	90.00	90.00	90.00
ATOM:	3	0 1	A	T 0.7500	-0.2500	-0.2500	IS	3.9637	0 A.U.	2.09750	ANG	90.00	90.00	90.00
ATOM:	3	01	А	T 0.2500	-0.7500	0.2500	IS	3.9637	0 A.U.	2.09750	ANG	90.00	90.00	180.00
ATOM:	2	Ni2	A	T -0.5000	-0.5000	0.5000	IS	5.6055	2 A.U.	2.96631	ANG			
ATOM:	2	Ni2	A	T -0.5000	0.5000	-0.5000	IS	5.6055	2 A.U.	2.96631	ANG	2		
ATOM:	2	Ni2	A	T -0.5000	0.5000	0.5000	IS	5.6055	2 A.U.	2.96631	ANG	8		
ATOM:	2	Ni2	A	T 0.5000	-0.5000	-0.5000	IS	5.6055	2 A.U.	2.96631	ANG			
ATOM:	2	Ni2	A	T 0.5000	-0.5000	0.5000	IS	5.6055	2 A.U.	2.96631	ANG			
ATOM:	2	Ni2	A	T 0.5000	0.5000	-0.5000	IS	5.6055	2 A.U.	2.96631	ANG	112		Νι
ATOM:	1	Ni1	A	T -1.0000	1.0000	0.0000	IS	5.6055	2 A.U.	2.96631	ANG			
ATOM:	1	Ni1	A	T 1.0000	-1.0000	0.0000	IS	5.6055	2 A.U.	2.96631	ANG			
ATOM:	1	Ni1	A	T -1.0000	0.0000	1.0000	IS	5.6055	2 A.U.	2.96631	ANG			
ATOM:	1	Ni1	A	T 0.0000	-1.0000	1.0000	IS	5.6055	2 A.U.	2.96631	ANG			
ATOM:	1	Ni1	A	T 0.0000	1.0000	-1.0000	IS	5.6055	2 A.U.	2,96631	ANG			
ATOM:	1	Ni1	A	T 1.0000	0.0000	-1.0000	IS	5.6055	2 A.U.	2,96631	ANG	8		
ATOM:	3	0 1	A	T -0.2500	-0.2500	-0.2500	IS	6.8653	3 A.U.	3.63298	ANG			
ATOM:	3	0 1	A	T 0.2500	0.2500	0.2500	IS	6.8653	3 A.U.	3.63298	ANG			
ATOM:	3	0 1	A	T -1.2500	0.7500	0.7500	IS	6.8653	3 A.U.	3.63298	ANG			
ATOM:	3	0 1	A	T -0.7500	-0.7500	1.2500	IS	6.8653	3 A.U.	3.63298	ANG			
ATOM:	3	0 1	A	T -0.7500	1.2500	-0.7500	IS	6.8653	3 A.U.	3.63298	ANG			
ATOM:	3	0 1	Δ	T 0.7500	-1.2500	0.7500	TS	6.8653	3 A.U.	3.63298	ANG			
ATOM	3	0 1	Δ	T 0.7500	0 7500	-1.2500	TS	6 8653	3 4 11	3 63298	ANG			
ATOM .	3	0 1	Δ	T 1 2500	-0 7500	-0 7500	TS	6 8653	3 A II	3 63298	ANG			
Atom	1 e	quiv 1	Ni1	Bo	nd-Valen	ce Sum	2	.40	2.55	0.00270	1110			

Illustration: NiO (Ex. 13 & 14)

Ni-Ni (J₁) = 2.966 Å Ni-Ni (J₂) = 4.195 Å

6 Ni1-Ni2 6 Ni1-Ni1

Illustration: NiO (Ex. 13 & 14)

x nn -> 3

vi NiO.outputnn

TOM:	1	. E(QUIV.	1	Ni1		AT 0	.00000	0.0	0000 0	.00000		
MT (1)	=2.0	05000	AND	RMT (3)=	1.77000						
UMS	то	3.8	2000	LT.	NN-	DIST=	3.96370						
TOM:	3	8 0	1	A	T -0	.2500	-0.2500	0.7500	IS	3.96370	A.U.	2.09750	ANG
TOM:	3	0	1	A	T 0	.2500	0.2500	-0.7500	IS	3.96370	A.U.	2.09750	ANG
TOM:	3	0	1	A	T -0	.2500	0.7500	-0.2500	IS	3.96370	A.U.	2.09750	ANG
TOM:	3	8 0	1	A	T -0	.7500	0.2500	0.2500	IS	3.96370	A.U.	2.09750	ANG
TOM:	3	0	1	A	T 0	.7500	-0.2500	-0.2500	IS	3.96370	A.U.	2.09750	ANG
TOM:	3	0	1	A	T 0	.2500	-0.7500	0.2500	IS	3.96370	A.U.	2.09750	ANG
TOM:	2	. N	i2	A	T -0	.5000	-0.5000	0.5000	IS	5.60552	A.U.	2.96631	ANG
TOM:	2	N	i2	A	T -0	.5000	0.5000	-0.5000	IS	5.60552	A.U.	2.96631	ANG

Ni-Ni	(J ₁)	=	2.966	Å
Ni-Ni	(J ₂)	=	4.195	Å

ATOM:	3	0 1	AT	0.7500	-1.2500	0.7500	IS	6.86533 A.U.	3.63298 ANG		
ATOM:	3	0 1	AT	0.7500	0.7500	-1.2500	IS	6.86533 A.U.	3.63298 ANG		
ATOM:	3	0 1	AT	1.2500	-0.7500	-0.7500	IS	6.86533 A.U.	3.63298 ANG	_	
ATOM:	2	Ni2	AT	-0.5000	-0.5000	1.5000	IS	7.92740 A.U.	4.19500 ANG		
ATOM:	2	Ni2	AT	0.5000	0.5000	-1.5000	IS	7.92740 A.U.	4.19500 ANG	6/2	
ATOM:	2	Ni2	AT	-1.5000	0.5000	0.5000	IS	7.92740 A.U.	4.19500 ANG		2
ATOM:	2	Ni2	AT	-0.5000	1.5000	-0.5000	IS	7.92740 A.U.	4.19500 ANG		3
ATOM:	2	Ni2	AT	0.5000	-1.5000	0.5000	IS	7.92740 A.U.	4.19500 ANG		
ATOM:	2	Ni2	AT	1.5000	-0.5000	-0.5000	IS	7.92740 A.U.	4.19500 ANG		
ATOM:	3	01	AT	-1.2500	-0.2500	0.7500	IS	8.86311 A.U.	4.69015 ANG	-	
ATOM:	3	0 1	AT	-1.2500	0.7500	-0.2500	IS	8.86311 A.U.	4.69015 ANG		

J₂ / Ni 3 Ni1-Ni2

Illustration: NiO (Ex. 13 & 14)

Illustration: NiO (Ex. 13 & 14)

Magnetic properties:

- Spin-state (high/low) \checkmark
- Long-range/short-range orders
- Collinear / non-collinear
- ✓ Magnetic anisotropy
- Magnetic frustration \checkmark
 - Magnetic exchange

Different response as function of the direction of the applied magnetic field (consequence of the spin-orbit coupling)

> Magnetization of a single crystal of YCo₅

http://www.tara.tcd.ie/handle/2262/83258

Magnetic susceptibility of a single crystal of Li₂IrO₃

Estimation in WIEN2k

- Do a regular scalar-relativistic "scf" calculation
- save_lapw
- initso_lapw
 - case.inso:

WFFIL	
4 1 0	llmax,ipr,kpot
-10.0000 1.50000	emin,emax (output energy window)
0. 0. 1.	direction of magnetization (lattice vectors)
NX	number of atoms for which RLO is added
NX1 -4.97 0.0005	atom number,e-lo,de (case.in1), repeat NX times
0 0 0 0 0	number of atoms for which SO is switch off; atoms

• case.in1(c):

()							
2	0.30	0.005	CONT 1				
0	0.30	0.000	CONT 1				
K-VE	CTORS FROM	UNIT:4	-9.0	4.5	65	emin/emax/nband	

• symmetso (for spin-polarized calculations only)

* run(sp)_lapw -so -so switch specifies that scf cycles will include SOC

Estimation in WIEN2k

Estimation of the Magneto-crystalline Anisotropy Energy (MAE) of CuO

Allows to define the magnetization easy and hard axes

Here we have considered the following expression:

MAE = E[u v w] - E[easy axis]

E[uvw] is the energy deduced from spin-orbit calculations with the magnetization along the [uvw] crystallographic direction

[1] X. Rocquefelte, P. Blaha, K. Schwarz, S. Kumar, J. van den Brink, Nature Comm. 4, 2511 (2013)

Estimation in WIEN2k

Estimation of the Magneto-crystalline Anisotropy Energy (MAE) of CuO

Allows to define the magnetization easy and hard axes

Here we have considered the following expression:

MAE = E[u v w] - E[easy axis]

E[uvw] is the energy deduced from spin-orbit calculations with the magnetization along the [uvw] crystallographic direction

[1] X. Rocquefelte, P. Blaha, K. Schwarz, S. Kumar, J. van den Brink, Nature Comm. 4, 2511 (2013)

Estimation in WIEN2k

PHYSICAL REVIEW B 82, 220402(R) (2010)

9

J dependence in the LSDA+U treatment of noncollinear magnets

Eric Bousquet^{1,2} and Nicola Spaldin³ ¹Materials Department, University of California, Santa Barbara, California 93106, USA ²Physique Théorique des Matériaux, Université de Liège, B-4000 Sart Tilman, Belgium ³Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland (Received 30 October 2010; published 13 December 2010)

We re-examine the commonly used density-functional theory plus Hubbard U (DFT+U) method for the case of noncollinear magnets. While many studies neglect to explicitly include the exchange-correction parameter J, or consider its exact value to be unimportant, here we show that in the case of noncollinear magnetism calculations the J parameter can strongly affect the magnetic ground state. We illustrate the strong J dependence of magnetic canting and magnetocrystalline anisotropy by calculating trends in the magnetic lithium orthophosphate family Li MPO_4 (M=Fe and Ni) and diffuorite family MF_2 (M=Mn, Fe, Co, and Ni). Our results can be readily understood by expanding the usual DFT+U equations within the spinor scheme, in which the J parameter acts directly on the off-diagonal components which determine the spin canting.

DOI: 10.1103/PhysRevB.82.220402

PACS number(s): 75.30.-m, 71.10.-w

Be careful! No ideal functional to deals with non-collinear magnetism

Magnetic properties:

- Spin-state (high/low)
- Long-range/short-range orders
- Collinear / non-collinear
- Magnetic anisotropy
- Magnetic frustration
- Magnetic exchange

Which model Hamiltonian?

Open question for the data treatment of both experimental and theoretical investigations!

General spin Hamiltonian describing the magnetic properties of a material with localized electrons

$$\widehat{H}_{spin} = \sum_{i < j} J_{ij} (\widehat{S}_i, \widehat{S}_j)$$

J_{ij} : Symmetric exchange interaction (Heisenberg exchange interaction)

DOI: 10.1039/c2dt31662e

General spin Hamiltonian describing the magnetic properties of a material with localized electrons

$$\widehat{H}_{spin} = \sum_{i < j} J_{ij} (\widehat{S}_i, \widehat{S}_j) + \sum_{i < j} \overrightarrow{D}_{ij} (\widehat{S}_i \times \widehat{S}_j)$$

 \vec{D}_{ij} : Antisymmetric exchange interaction (*Dzyaloshinskii-Moriya interaction*)

DOI: 10.1039/c2dt31662e

General spin Hamiltonian describing the magnetic properties of a material with localized electrons

 $\widehat{H}_{spin} = \sum_{i < j} \int_{ij} (\widehat{S}_i \cdot \widehat{S}_j) + \sum_{i < j} \overrightarrow{D}_{ij} (\widehat{S}_i \times \widehat{S}_j) + \sum_i A_i S_{iz}^2 + \sum_{i < j} K_{ij} (\widehat{S}_i \cdot \widehat{S}_j)^2 + \cdots$

- J_{ij} : Symmetric exchange interaction (Heisenberg exchange interaction)
- \vec{D}_{ij} : Antisymmetric exchange interaction (*Dzyaloshinskii-Moriya interaction*)
 - A_i: « Single-ion » anisotropy (Easy/hard axes of magnetization)
- *K_{ij}* : Biquadratic interaction (fourth-order perturbation to the Hubbard model)

Spin – orbit coupling

Grazie per l'attenzione Giochiamo ora con WIEN2k

CNIS

Xavier Rocquefelte WIEN2k workshop 2024 – ICTP Trieste (Italy)