Machine-learned force fields

18-04-24. 27th Wien2k Workshop. Trieste.

Georg Madsen

Institute of Materials Chemistry, TU Wien, Austria

TECHNISCHE UNIVERSITÄT WIEN

- Neural-network force fields
- $\cdot\,$ Effective harmonic potentials
 - $\cdot\,$ Phase stability in ${\rm HfO_2}$
- \cdot The SrTiO_3 surface phase diagram
- Nested sampling
 - The phase diagram of Si

Use regression model to bypass explicit calculation of E_{pot}

Descriptor based MLFF:

- Behler-Parinello (2007) and Bartók-Csányi (2010)
- Preprocess structure into symmetry compliant fingerprints
- Map onto energies and forces through ML model

Perceptron

Activation function

Multi-layer perceptron (Neural network)

Perceptron

Activation function

Multi-layer perceptron (Neural network)

NeuralIL

Algorithmically differentiable JAX-based neural-network force field

- Just-in-time compilation of Python functions
- Automatic differentiation
 Multiple CPU/GPU/TPU cores
- Swish activation function
- Element-specific-spherical-Bessel fingerprints

Spherical Bessel descriptors

Project weighted local density

$$\rho_i(\mathbf{r}) = \sum w_{ij} \delta(\mathbf{r} - \mathbf{R}_{ij})$$

onto orthonormal basis functions

 $B_{nlm} = g_{n-l,l}(r) Y_l^m(\theta,\varphi)$

and calculate the power spectrum.

Optimize Completeness

Training. 15 ionic pairs of ethylammonium nitrate

Project local density of each chemical species

 $\rho_{ij}(\mathbf{r}) = \sum \delta(\mathbf{r} - \mathbf{R}_{ij})$

onto orthonormal basis functions

 $B_{nlm} = g_{n-l,l}(r)Y_l^m(\theta,\varphi)$

Model	MAE E_{pot} (meV/atom)	MAE <i>f</i> meV/Å
ZWEIGHTS	16.9	171
NEURALIL	1.9	65
NEURALIL+CENT	1.9	61

Montes-Campos, Carrete, Bichelmaier, Varela, Madsen, J. Chem. Inf. Model 62 (2022) p88

Transferability

Montes-Campos, Carrete, Bichelmaier, Varela, Madsen, J. Chem. Inf. Model 62 (2022) p88

Diffusion coefficients

10 ⁻¹¹ m²/s	Exp	OPLS	NeuralIL
Danion	6.9	0.13	8.7
D _{cation}	4.6	0.07	8.2

- Neural-network force fields
- Effective harmonic potentials
 - $\cdot\,$ Phase stability in ${\rm HfO_2}$
- \cdot The SrTiO_3 surface phase diagram
- Nested sampling
 - The phase diagram of Si

Canonical ensemble

Hafnia

- Gate dielectrics semiconductor devices
- Control rods in nuclear reactors
- Ferroelectricity
- Surprisingly poor understanding of phase diagram

J. Am. Ceram. Soc., 89 [12] 3751–3758 (2006)
 DOI: 10.1111/j.1551-2916.2006.01286.x
 © 2006 The American Ceramic Society

The Zirconia–Hafnia System: DTA Measurements and Thermodynamic Calculations

Chong Wang, Matvei Zinkevich[†], and Fritz Aldinger*

Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Stuttgart, Germany

Fable II.	Literature Info	ormation on the P	hase T	ransition 1	Data of	HfO ₂	(α, Monocl	inic; β,	, Tetragonal;	γ,	Cubic; I	L, L	.iquio	d)
-----------	-----------------	-------------------	--------	-------------	---------	------------------	------------	----------	---------------	----	----------	------	--------	----

			Temperature (K	.)	Enthalpy of	Entropy of	Providence I
Transition	Reference	$A_{\rm s}$ $M_{\rm s}$		T_0	(J/mol)	$(J \cdot (mol \cdot K)^{-1})$	method
$\alpha \leftrightarrow \beta$	Curtis et al. ²⁶	1973					HTXRD
	Wolten ⁶	1883	2013	1948			HTXRD
	Aldebert et al.24	1773	1823	1798			HTXRD
	Fujimori et al. ¹⁸	2113	2063	2088			Dilatometry
	Boganov et al. ²⁷	2173					HTXRD
	Ruh et al. ¹¹			1893			HTXRD
	Senft and Stubican ²²			2023 + 20			HTXRD
	Stacy et al.23			2038			ND
	Stacy and Wilder ²⁵	2023	2073	2048			HTXRD
	Ruh and Hollenberg ²⁸	1863					HTXRD
	Stansfield ¹⁹	2073					DTA
	Gulamova and Novoselova ²¹		2066 + 40				HTXRD
	Kasper and Trovanchuk ⁵		_	2023 + 20			HTXRD
	Shevchenko et al.14	2103	2083	2093			DTA
	Kuznetsov et al.20	2073					HTXRD
	Baun ¹⁷	$2080(A_{\rm f})$	2018				RS
	This work	2066	2038	2052			DTA, extrapolated
	Boganov et al. ²⁷	2973					HTXRD
	Kasper and Trovanchuk ⁵	2873					DTA
	Shevthenko and Lopato29	2803					DTA

Effective harmonic potentials

$$F_{\text{harm}}[\{\mathbf{a}_i\}, T] = \sum_{n_{\mathbf{q}}} \left(\frac{\hbar \omega_{n_{\mathbf{q}}}}{2} + k_B T \ln \left[1 - e^{-\frac{\hbar \omega_{n_{\mathbf{q}}}}{k_B T}} \right] \right)$$

Determine the best harmonic approximation for the part of the potential energy surface which dominates nuclear motion at given conditions (Hooton, 1955)

Variational formulation

$$F[\hat{U}, \hat{\rho}_{0}] \leq \mathcal{F}_{\mathsf{EHP}} = \underbrace{F[\hat{U}, \hat{\rho}]}_{F_{\mathsf{harm}}} + \underbrace{\mathsf{Tr}\left[\hat{\rho}(\hat{U} - \hat{U})\right]}_{F_{\mathsf{corr}}}$$
$$F_{\mathsf{corr}}[\{\mathbf{a}_{i}\}, T] = \int \rho(E_{pot} - E_{HA}) d\mathbf{R}$$

Errea, Calandra, Mauri Phys. Rev. Lett. 111 (2013) 177002

HfO₂: Effective harmonic potential with machine-learned force field

HfO₂ Thermal expansion

- Approx. 3 10⁶ structures evaluated
- Excellent agreement of temperature dependence of lattice constants
- Not for cubic phases

Bichelmaier, Carrete, Madsen Phys. Rev. B 107 (2023) p184111

HfO₂ Free energies

- Phase transition **P2₁c P4₂nmc**
- Cubic phases not stable
 - Few experiments with internal disagreement
 - Presence of oxygen vacancies ?
 - $\cdot\,$ Multiple results suggest that no stoichiometric cubic phase exits in $\rm ZrO_2$

- Neural-network force fields
- $\cdot\,$ Effective harmonic potentials
 - $\cdot\,$ Phase stability in ${\rm HfO_2}$
- \cdot The SrTiO_3 surface phase diagram
- Nested sampling
 - The phase diagram of Si

$SrTiO_3(110)$ surface phase diagram

Riva et al., Phys. Rev. Mater. 3 (2019) 043802

- ESs commonly employed for continuous-parameter optimisation
- Employ lower variety of genetic operators than GA
- Endogenous parameters define the genotype distribution and are adapted during evolution

CMA-ES

 Population drawn from multi-dimensional normal distribution

$$\mathbf{x}_{k}^{(g)} \sim \mathcal{N} \big(\mathbf{m}^{(g)}, (\sigma^{(g)})^{2} \mathbf{C}^{(g)} \big)$$

- Transferable hyperparameters
- Problem-dependent parameters: $\sigma^{(0)}$, $\mathbf{m}^{(0)}$

- ESs commonly employed for continuous-parameter optimisation
- Employ lower variety of genetic operators than GA
- Endogenous parameters define the genotype distribution and are adapted during evolution

CMA-ES

 Population drawn from multi-dimensional normal distribution

$$\mathbf{x}_{k}^{(g)} \sim \mathcal{N}\left(\mathbf{m}^{(g)}, (\sigma^{(g)})^{2} \mathbf{C}^{(g)}\right)$$

- Transferable hyperparameters
- \cdot Problem-dependent parameters: $\sigma^{(0)}$, $\mathbf{m}^{(0)}$

g=0 g=1

- ESs commonly employed for continuous-parameter optimisation
- Employ lower variety of genetic operators than GA
- Endogenous parameters define the genotype distribution and are adapted during evolution

CMA-ES

• Population drawn from multi-dimensional normal distribution

$$\mathbf{x}_{k}^{(g)} \sim \mathcal{N} \big(\mathbf{m}^{(g)}, (\sigma^{(g)})^{2} \mathbf{C}^{(g)} \big)$$

- Transferable hyperparameters
- Problem-dependent parameters: $\sigma^{(0)}$, $\mathbf{m}^{(0)}$

- ESs commonly employed for continuous-parameter optimisation
- Employ lower variety of genetic operators than GA
- Endogenous parameters define the genotype distribution and are adapted during evolution

CMA-ES

 Population drawn from multi-dimensional normal distribution

$$\mathbf{x}_{k}^{(g)} \sim \mathcal{N}\left(\mathbf{m}^{(g)}, (\sigma^{(g)})^{2} \mathbf{C}^{(g)}\right)$$

- Transferable hyperparameters
- Problem-dependent parameters: $\sigma^{(0)}$. $\mathbf{m}^{(0)}$

Surface reconstructions with CMA-ES

- Adapt CMA-ES to surface reconstructions
- 42 atoms \rightarrow 126 dof (4 × 1)
- DFT backend reproduces 6-10 overlayer from literature

Training NNFF on CMA-ES trajectory

- Good agreement with DFT over large range of energies/forces
- Diverse set of training structures with net atomic charges covering known titanium oxidation states.

Sets of CMA-ES runs with NNFF backend

- Set of 50 runs. Same founder; Different random seeds
- 4×1 : P2 structure energetically comparable to Pm structure
- 4 × 1 training data.

Wanzenböck et al. Digital Discovery, 1 (2022) p703

STO(110) 4 × 1 - STM

simulated

experimental¹

Wanzenböck et al., *Digit. Discov.* 1 (2022) 703 ¹ Expirimental: Wang et al., *Nano Lett.* 16 (2016) 4 Learning in High Dimension Always Amounts to Extrapolation

Randall Balestriero¹, Jérôme Pesenti¹, and Yann LeCun^{1,2}

¹Facebook AI Research, ²NYU

The notion of interpolation and extrapolation is fundamental in various fields from deep learning to function approximation. Interpolation occurs for a sample x whenever this sample falls inside or on the boundary of the given dataset's convex hull. Extrapolation occurs when x falls outside of that convex hull. One fundamental (mis)conception is that state-of-the-art algorithms work so well because of their ability to correctly interpolate training data. A second (mis)conception is that interpolation happens throughout tasks and datasets, in fact, many intuitions and theories rely on that assumption. We empirically and theoretically argue against those two points and demonstrate that on any high-dimensional (>100) dataset, interpolation almost surely never happens. Those results challenge the validity of our current interpolation/extrapolation definition as an indicator of generalization performances.

PCA fingerprints.

Similarity: The projection of the local atomic environments of the low energy 5×1 structures fall within the area covered by the projection of the 4×1 training data. Wanzenböck et al. Digital Discovery, 1 (2022) p703 STO(110) 2 × m

Wang et al. *Nano Lett.* 16 (2016) 4 Riva et al., *Phys. Rev. Mater.* 3 (2019) 043802

Active learning with neuralIL

Uncertainty estimation

- Deep ensembles
- Committees

Versatile Learned Optimization

Optimize adversarial loss (Koda-Bombarelli)

$$\mathcal{L} = \sigma_{\rm f}^2 \exp\left(-\frac{E_{\rm pot}}{k_{\rm B}T}\right)$$

STO(110) 2 × m: MLFF driven EA

- 158 atoms: 474 DOF
- Identify several local minima
- $\cdot\,$ New structure in agreement with published STM

- Neural-network force fields
- Effective harmonic potentials
 - $\cdot\,$ Phase stability in ${\rm HfO_2}$
- \cdot The SrTiO_3 surface phase diagram
- Nested sampling
 - The phase diagram of Si

Skilling's nested sampling

Silicon. The NNFF

- · Structures taken from database of Bartók-Csányi and recalculated with PBE and r2SCAN
- r2SCAN results in increase in energy differences

Unglert, Carrete, Pártay, Madsen. Phys. Rev. Mater. 7, (2023) 123804

Silicon. The phase diagram

Silicon. The nested sampling walkers

• Highly diverse training set is essential

Unglert, Carrete, Pártay, Madsen. Phys. Rev. Mater. 7, (2023) 123804

Silicon. The basins

Unglert, Carrete, Pártay, Madsen. Phys. Rev. Mater. 7, (2023) 123804