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•Berry phase

-Geometrical phase

-Berry/Zak’s phase

•Modern theory of polarization

-Polarization of crystalline materials

-Spontaneous polarization and Born effective charges

•Topology in band theory

-Topology

-Topological invariants

-Geometry of the reciprocal space

-Berry phase, curvature and connection.

•Topological materials: types and characterization (WIEN2k & BerryPI)

-Bulk boundary correspondence principle

-Chern Insulators: CherN.py(FeBr3 monolayer)

-Berry curvature maps: CherN.py(MoS2 monolayer)

-  topological insulators: wcc.py(Bi2Se3)

-Characterization of Weyl semimetals: WloopPHI(TaAs)

ℤ2
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Geometrical (Patcharatnam) phase

Source:  “Topological matter, Chapter 3” 
by D. Gresch and A. Soluyanov 

Vector space

k parameter space

Geometrical 
phase

Vector  Vk∈
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Geometrical (Patcharatnam) phase in QM: discrete formulation

Source:  “Topological matter, Chapter 3” 
by D. Gresch and A. Soluyanov 

Vector space Hilbert space (k)
H(k) |ψ(k)⟩ = E(k) |ψ(k)⟩

Geometrical 
phase

Vector  Vk∈

  Hilbert Space(k)|ψo(k)⟩ ∈
Considering only ground 
eigenstates at different k 

(Adiabatic evolution)

e−iΔφ12 =
⟨ψ(k1) |ψ(k2)⟩

|⟨ψ(k1) |ψ(k2)⟩ |
Δφ12 = − Im ln⟨ψ(k1) |ψ(k2)⟩

Relative phase difference

No physical meaning as a gauge transformation of the form: 

|ψ(k2)⟩ → e−iδφ2 |ψ(k2)⟩ |ψ(k1)⟩ → e−iδφ1 |ψ(k1)⟩

Leads to a change 

Δφ12 → Δφ12 + (δφ1 − δφ2)

k parameter space
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Geometrical (Patcharatnam) phase in QM: discrete formulation

Source:  “Topological matter, Chapter 3” 
by D. Gresch and A. Soluyanov 

Geometrical 
phase

Vector  Vk∈

But, what if we take a closed sequence of inner products or loop ?

|ψ(k1)⟩ = |ψ(kN)⟩

|ψ(kN−1)⟩

|ψ(k2)⟩ ….

….

The total phase difference is given by 

γ = Δφ12 + Δφ23 + Δφ34 + . . . + Δφ(N−1)N

γ = = − Im ln⟨ψ(k1) |ψ(k2)⟩⟨ψ(k2) |ψ(k3)⟩⟨ψ(k3) |ψ(k4)⟩ . . . ⟨ψ(kN−1) |ψ(kN=1)⟩

|ψ(k3)⟩
|ψ(k4)⟩

Which is a gauge invariant quantity as the 
gauge-arbitrary phases cancel in pairs.

γ = = − Im ln
N−1

∏
i=1

⟨ψ(ki) |ψ(ki+1)⟩

k parameter space
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Berry/Zak’s phase: continuum formulation

In the continuum formulation given k a real variable

ln⟨ψ(k) |ψ(k + dk)⟩ ≈ ⟨ψ(k) |∂kψ(k)⟩dk

Berry, Proc. R. Soc. London A 392, 45 (1984)
Zak, Phys. Rev. Lett. 62, 2747 (1989)

We can define

Berry potential: 

A(k) = − i⟨ψ(k) |∂k ψ(k)⟩

Berry curvature: 

Ω(k) = ∇k × A(k)

Berry phase is given as closed line integral of the Berry 
potential in k parameter space and equivalently as a flux of 
the Berry curvature through a surface S (Stokes’ theorem) 

γ∂S = ∮∂S
A(k) ⋅ dk = ∬S

Ω(k) ⋅ dS

For electrons in a crystal, the Bloch theorem states

ψ(n)
k (r) = u (n)

k (r)eikr u (n)
k (r + R) = u (n)

k (r)
Cell periodic: well behaved

[ 1
2m

p2 + V(r)] ψ(n)
k (r) = ε(n)(k)ψ(n)

k (r)

Mapping from k independent Hamiltonian to H(k) 
with k-independent boundary conditions (  belong 
to  the same Hilbert space).

u (n)
k

[ 1
2m

(p + ℏk)2 + V(r)] u (n)
k (r) = ε(n)(k)u (n)

k (r)

07

γ(n)
∂S = ∮∂S

i⟨unk |∇k |unk⟩ ⋅ dk = ∬S
Ω(n)(k) ⋅ dS

Is there any application?

Berry curvature is 
also gauge invariant!
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Modern theory of polarization: pioneered by King-Smith, David Vanderbilt and Raffaele Resta

Polarization: Fundamental quantity essential to the electronic response of the system.

Some related properties: Piezo- and Ferroelectricity Dielectric screening

+

E

For the case of a collection of charges in the ionic limit or charge densities  the dipole moment: n(r)

d = ∑
i

qiri d = ∫ en(r)r dr

Well defined provided there is no net charge. 

08
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Problem: No existence of a proper microscopic theoretical description of polarization in crystals,  the charge 
distribution is periodic in space and this leads to the dipole operator to not be well defined. 

Reason:  The polarization of a periodic system is a lattice rather than a vector, it is a multivalued quantity property 
which is a natural consequence of the periodicity in a bulk solid. 

Consequence: Obtaining different values depending on the choice of the unit cell

 

Now, for a solid we want to convert this idea to a bulk property: dipole moment per unit volume. 

P P
Spaldin, N. A. Solid State Chemistry, 195,2-10, (2012).

Modern theory of polarization

09



A. Gómez (McMaster University) A. Gómez (McMaster University)A. Gómez (McMaster University) Berry phases and topological materials

Modern theory of polarization

Solution: Only the change in polarization has physical meaning!

�P

�strain +

E

�P

�E

∆P = P
(1)

−P
(0)

Supported by the experimental fact that measurements of absolute polarization of a crystal have never been measured 
as a bulk property. 

Well known properties are derivative of the polarization with respect to suitable perturbations.

10
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Modern theory of polarization

The change in polarization is singled valued provided we stick with the same choice of unit cell and basis throughout 
the analysis and can be quantified by employing the Berry phase of the electronic wavefunction

ΔP = P(1) − P(0)

+

0

Pion =
e

⌦

atomsX

s

Z ion
s rs

Pion =
e

⌦

atomsX

s

Z ion
s rs

Components of total microscopic polarization

P = Pionic + Pelectronic

Pionic =
e
Ω

atoms

∑
s

Zion
s rs Pelectronic = Ω−1 ∫ dr rρ(r) = Ω−1

bands

∑
n

⟨ψn |r |ψn⟩

r̂ = i∇k
  (position operator in k-space)

Pelectronic = −
2e

(2π)3

bands

∑
n

∫BZ
dki⟨unk |∇k |unk⟩

 Berry phase

King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651 (1993)
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http://publish.aps.org/search/field/author/R.%20D.%20King-Smith
http://publish.aps.org/search/field/author/David%20Vanderbilt
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Polarization: BerryPI

The Berry phase is computed for individual k-paths parallel to an axis in the 
Brillouin zone and the average for all paths is taken.

These strings are equivalent to a closed loop due to the Born–von Karman 
boundary conditions.

An electric field causes linear variation in k.  A closed path is achieved when k 
sweeps the whole Brillouin Zone. (Other way to induce loops in parameter space 
is through magnetic-induced cyclotron Orbits )

12

Spontaneous polarization:  Ps = Pnc − Pc

Requires 2 structures

A

BO
2-

P
o
la

ri
z
a
ti
o
n

a) b)
x

y

z

O1

O2
O3

A

BO
2-

P
o

la
ri
z
a

ti
o

n

a) b)
x

y

z

O1

O2
O3

λ0λ1

Characteristic of ferroelectric materials

Born effective charge

Z∗

s,ij =
Ω

e

∆Pi
∆rs,j

ϕ = ϕel + ϕion

∆ϕ = ϕ(perturbed)− ϕ(unperturbed)

Z∗

s,ii =
∆ϕi

2π∆us,i

Δuz

Ga

NCentrosymmetricNon-centrosymmetric

Amount of charge that 
contributes to the 
polarization during the 
displacement of the 
ions 
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Topology

Torus to mug morphing 
animation, by Lucas 
Vieira, License: Public 
Domain

Topology is the study of the properties of geometrical objects that remain invariant as the object is continuously 
deformed. 

Topological Invariant: 

•  Allows the classification of objects in discrete classes

• Integer quantity that cannot be changed without changing the whole topological class.

•  Encodes information about the global structure of the object/space

• Can not vary in a continuous fashion, which points to potential great stability of a property. 

 Genus = 1
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 Topological materials: what is topological about them?

Hilbert space (k)

k-parameter space = Brillouin Zone

Vector (Groundstate) 

 

Hilbert space

∈

The topology is defined by the way the eigenvectors change as a function of k in the Brillouin zone.

The relevant topology is not related to the shape in real space nor reciprocal space!

From the boundary conditions: 
the BZ is a closed space.

{ |unk⟩}∈ occupied

Span

Vk(C) ∀ k

2D BZ is a T2

Source:  “Electronic structure: Basic 
theory and practical methods., Chapter 

25.4” by Martin, R. M. 
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An important contributor to topological 
phenomena is the spin-orbit interaction.

 Topological materials: Classification

C = A C ≠ A

Topological Insulator

Surface/Edge

• Vacuum is topologically trivial ( )

• Bulk boundary correspondence principle: gapped bulk and conductive surface/edge 
states.

• Topologically protected: as long as the gap remains open, surface states exist.

• Topology is global property of the bulk electronic structure with measurable 
effects on the interface. 

• Potential application in quantum computing

C = 0

15

Berry curvature, when cannot be neglected? Ω(k) = ∇k × A(k)

Ω(−k) = − Ω(k)TRS invariant:

P-symmetric: 
(Spatial inversion symmetry)

Ω(−k) = Ω(k)
Both present → Ω = 0(Magnetic fields breaks TRS)



A. Gómez (McMaster University) A. Gómez (McMaster University)A. Gómez (McMaster University) Berry phases and topological materials

 Chern Insulator/ Quantum anomalous Hall phase

kx

Γ

ky

string
(kx, 0...1)

Brillouin zone

It is regarded as the basic tological insulator from which other topological states are derived. 

•  2D system

•Magnetic: Time Reversal Symmetry spontaneously broken

•Insulating 

•High SOC (band inversion)

Characteristics: Physical consequence

Spin filtered 
conductive edge 
states(number 

of crossing 
states = )ΔC

Topological Invariant: Chern Number

C =
1

2π

occ.

∑
n

∫BZ
Ω(n)(k) ⋅ dS =

1
2π

occ.

∑
n

γ∂BZ
Winding of the 
Berry phase 
around the BZ

Linked to the Quantum anomalous Hall conductivity

σAHC = C
e2

h

Berry phase evolution 
for all occupied bands

∑
n∈occ

ϕn

kx0 1

2π

Characterization

16

C = 1

C = 0

Modified from: Hasan, M. Z., & Kane, C. L. (2010). Rev Mod Phys, 82(4)

Xue, Q.K. , et. Al. (2013).Science, 340(6129), 167–170.
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Γ

 K 

M  

b1

b2

(a)

(b)

(c) (d)

En
er

gy
 (e

V)

Γ M K Γ

E F 0.0

 0.2

 0.4

 0.6

 0.8

 -0.2

-0.4

 -0.6

 -0.8
Γ M K Γ

E F 

En
er

gy
 (e

V
)

0.0

 0.2

 0.4

 0.6

 0.8

 -0.2

 -0.4

 -0.6

 -0.8

(e)

(f)

Fe
Br 0

-50
-100

-150
-200

-250

b1

b2 K 

Ω
(r

ad
 b

oh
r  

)2

0
-50

-100

-150

-200

-250

Ω
(r

ad
bo

hr
)2

b 1

b2
0.2

0.4 0.6
1.0

0.8

0.2

0.0

0.4

0.6
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Chern number:

C = (2π)−1 ∬BZ
Ω(k) ⋅ dS = − 1

A.F. Gomez-Bastidas, O. 
Rubel,292,2023,108864,10.1016/
j.cpc.2023.108864.

∑
n∈occ

ϕn

 Chern Insulator: 2D-FeBr3 (CherN.py)

wcc.py

NO-SOC SOC

Ωαβ(k) = − 2 Im ∑
n≠occ

⟨u(0)
k |∂Ĥk /∂kα |u(n)

k ⟩⟨u(n)
k |∂Ĥk /∂kβ |u(0)

k ⟩

(ϵ(0)
k − ϵ(n)

k )2

Berry Curvature
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 Berry curvature map: 2D-MoS2 (CherN.py)

En
er

gy
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V
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M              K                                 Γ

EF 

60
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–60b 1

b20.2
0.4

0.6
1.00.8

0.2
0.0
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0.8

1.0

a1

a2a3

A.F. Gomez-Bastidas, O. 
Rubel,292,2023,108864,10.1016/
j.cpc.2023.108864.

Chern number:

C = (2π)−1 ∬BZ
Ω(k) ⋅ dS = 0

It is not 
magnetic, hence 
invariant under 

TRS

Curvature is local 

Used to obtain a 
global property

Honeycomb lattice 
with different sites 
breaks the spatial 

inversion symmetry
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1) Construct a structure file

2) Perform SCF-SOC calculation

To calculate the Berry curvature map on the z=0 plane of the BZ.

3) Edit and run CherN.py script

 
 

Tutorial

 Berry curvature map workflow (CherN.py)

bands = [1,26] 
n_1 = 6    #discretization in dir_1      
n_2 = 6    #discretization in dir_2
plane_dir = 3  # direction normal to the plane  
plane_height = 0.0              # value of the constant plane
boundary = [0 , 1.0 , 0 , 1.0] #boundary selection
spinpolar = False                # spin polarized
orbital = False                    # additional orbital potential 
parallel = False                   # parallel calculation

dir_1 

dir_2

plane_dir

plane_height = 0

grep ‘:NOE’ case.scf

0 1.0

1.0

5 x 5
The total Chern number is:  0.0

.pdf , .csv, .png

19
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 Kane-Mele-Fu Z2 insulator

(b)

(a)

Γ

k{1} = 0 plane

TRIMstring
(0, k{2}, 0...1)

b1 b1

b2 b2
b3

Γ

Γ(0, 1) Γ(1, 1)

Γ(1, 0)

string
(k{1}, 0...1)

k1

k2

kJ = k1
(0, 1) 

kJ–1

A.F. Gomez-Bastidas, O. 
Rubel,292,2023,108864,10.1016/
j.cpc.2023.108864.

•Time Reversal Symmetry is conserved

•Characterization through the evolution of the hybrid Wannier charge centers.  

 index =  tells us 
on which face to expect edge 

states. 

ℤ2 (ν0; ν′￼1 ν′￼2 ν′￼3 )

2D 3D

Topological Invariant

TRIM are a consequence 
of Kramers’s theorem(b)

(a)

Γ

k{1} = 0 plane

TRIMstring
(0, k{2}, 0...1)

b1 b1

b2 b2
b3

Γ

Γ(0, 1) Γ(1, 1)

Γ(1, 0)

string
(k{1}, 0...1)

k1

k2

kJ = k1
(0, 1) 

kJ–1

Physical consequence

xn =
a

2π
γn

Soluyanov, A. A.; Vanderbilt, D. Phys. Rev. B 
2011, 83 (23)

Conductive edge states but no net 
Hall conductivity

Hasan, M. Z., & Kane, C. L. (2010). Rev Mod Phys, 82(4)
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(b)

(c) (d)
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Γ L X Γ Z

EF 

En
er

gy
 (e
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 Kane-Mele-Fu Z2 insulator: Bi2Se3

(b)

(c) (d)

(a)
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b1a3

b3
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X
Γ
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Γ L X Γ Z

EF 

En
er

gy
 (e

V
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EF 

Γ L X Γ Z

En
er

gy
 (e

V
)

  0.0

  1.0

  2.0

 -1.0

 -2.0

full SOC reduced SOC

 index = ℤ2 (1; 000)

Evolution of hybrid Wannier charge centers

x

one crossing, thus 
ν1 = 1

Γ L

 kx = 0.5

no crossings, thus 
ν′￼1 = 0

XL

 kx = 0

ky

ν0 = ν1 + ν′￼1 = ν2 + ν′￼2 = ν3 + ν′￼3 mod 2

Information beyond 
the electronic band-

structure?

21

Strong topological insulator: all faces present conductive states
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Input

1) Construct a structure file

2) Perform SCF-SOC calculation

To calculate the HWCC:

 
 

Hybrid Wannier charge centers workflow (wcc.py)

3) Edit and run wcc.py script

kevoldir = 2       # b2 (Wilson loops are constructed perpendicularly) 
kevol = [0, 0.5]   # start and end fraction of b2 in this case from Gamma to L 
nkevol = 20        # discretization intervals (Number of lines constructed)
kwlsndir = 3       # b3 (Hybrid Wannier centers calculation direction)
nkwlsn = 10       # discretization intervals (Points along the line)
kfix = 0.0           # in fraction of reciprocal lattice vectors (b1)
bands = [61, 78]  # select an isolated group
parallel = True     # 
spinpolar = False #
orbital = False     #

22

4) wcc.csv file
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Wilson loop (L)
Loop 
displacement

kx

ky

kz

kx

ky

kz

kx
ky

kz

k0 = kJ

kJ–1

kj

Wave vector k

EF
En

er
gy

Weyl node
Loop trajectory

Surface (S’)Berry
curvature

Berry curvature
vector field
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direction of
Berry flux

band index
N

Weyl node

Closed
surface (S)
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(a)
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 Topological materials: Weyl semimetals, Weyl fermion chirality (WlooPHI)
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 Topological materials: Weyl semimetals

Weng et al.,  
Physical Review X 5, 011029 (2015)

position of the Weyl points by searching for the “source”
and “drain” points of the “magnetic field.” The Weyl points
in TaAs are illustrated in Fig. 2(a), where we find 12 pairs
of Weyl points in the vicinity of what used to be, in the
SOC-free case, the nodal rings on two of the mirror-
invariant planes. For each of the mirror-invariant planes,
after turning on SOC, the nodal rings will be fully gapped
within the plane, but isolated gapless nodes slightly off
plane appear, as illustrated in Fig. 2(b). Two pairs of Weyl
points are located exactly in the kz ¼ 0 plane, and another
four pairs of Weyl points are located off the kz ¼ 0 plane.
Considering the fourfold rotational symmetry, it is then
easy to understand that there are a total of 12 pairs of Weyl
points in the whole BZ. The Weyl points in the kz ¼ 0
plane are about 2 meV above the Fermi energy and form
eight tiny hole pockets, while the others are about 21 meV
below the Fermi level to form 16 electron pockets. The

appearance of Weyl points can also be derived from a
k · p model with different types of mass terms induced by
SOC, which will be introduced in detail in the Appendix.
The band structures for the other three materials—TaP,
NbAs, and NbP—are very similar. The precise positions
of the Weyl points for all these materials are summarized
in Table. I.

C. Fermi arcs and surface states

Unique surface states with unconnected Fermi arcs can
be found on the surface of a WSM. These can be under-
stood in the following way: For any surface of a WSM,
we can consider small cylinders in the momentum space
parallel to the surface normal. In the 3D BZ, these cylinders
will be cut by the zone boundary, and their topology is
equivalent to that of a closed torus rather than that of open
cylinders. If a cylinder encloses a Weyl point, by Stokes
theorem, the total integral of the Berry curvature (Chern
number) of this closed torus must equal the total “monopole
charge” carried by the Weyl point(s) enclosed inside. On
the surface of the material, such a cylinder will be projected
to a cycle surrounding the projection point of the Weyl
point, and a single Fermi surface cut stemming from the
chiral edge model of the 2D manifold with Chern number 1
(or −1) must be found on that circle. By varying the radius
of the cylinder, it is easy to show that such FSs must start
and end at the projection of two (or more) Weyl points with
different “monopole charge”; i.e., they must be “Fermi
arcs” [7,9,16]. In the TaAs materials family, on most of the
common surfaces, multiple Weyl points will be projected
on top of each other, and we must generalize the above
argument to multiple projections of Weyl points. It is easy
to prove that the total number of surface modes at the Fermi
level crossing a closed circle in surface BZ must equal the
sum of the “monopole charge” of the Weyl points inside the
3D cylinder that projects to the given circle. Another fact
controlling the behavior of the surface states is the MCN
introduced in the previous discussion, which limits the
number of FSs cutting certain projection lines of the mirror
plane (when the corresponding mirror symmetries are still
preserved on the surface).
By using the Green’s function method [5] based on the

tight-binding (TB) Hamiltonian generated by the previ-
ously obtained Wannier functions, we have computed the

(a)

(b)

FIG. 3. Berry curvature from pairs of Weyl points. (a) The
distribution of the Berry curvature for the kz ¼ 0 plane, where the
blue and red dots denote the Weyl points with chirality of þ1 and
−1, respectively; (b) same as (a) but for the kz ¼ 0.592π plane.
The insets show the 3D view of hedgehoglike Berry curvature
near the two selected Weyl points.

TABLE I. The two nonequivalent Weyl points in the xyz
coordinates shown in Fig. 1(b). The position is given in units
of the length of Γ-Σ for x and y and of the length of Γ-Z for z.

Weyl node 1 Weyl node 2

TaAs (0.949, 0.014, 0.0) (0.520, 0.037, 0.592)
TaP (0.955, 0.025, 0.0) (0.499, 0.045, 0.578)
NbAs (0.894, 0.007, 0.0) (0.510, 0.011, 0.593)
NbP (0.914, 0.006, 0.0) (0.494, 0.010, 0.579)
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Analog of 
monopole charge

The results are plotted in Fig. 2(d), which shows that
MCN is 1 for the ZNΓ plane (My) and the Z2 index is even
or trivial for the ZXΓ plane (Mxy). Then, if we consider
the (001) surface, which is invariant under the My mirror.
The nontrivial helical surface modes will appear because
of the nonzero MCN in the ZNΓ plane, which generates a
single pair of FS cuts along the projective line of the ZNΓ
plane [the x axis in Fig. 2(c)]. Whether these Fermi cuts will
eventually form a single closed Fermi circle or not depends
on the Z2 index for the two glide mirror planes, which are
projected to the dashed blue lines in Fig. 2(c). Since the Z2

indices for the glide mirror planes are trivial, as confirmed
by our Wilson-loop calculation plotted in Fig. 2(d), there
are no protected helical edge modes along the projective
lines of the glide mirror planes [dashed blue lines in
Fig. 2(c)], and the Fermi cuts along the x axis in Fig. 2(c)
must end somewhere between the x axis and the diagonal
lines [dashed blue lines in Fig. 2(c)]. In other words, they
must be Fermi arcs, indicating the existence ofWeyl points
in the bulk band structure of TaAs.

From the above analysis of the MCN and Z2 index of
several high-symmetry planes, we can conclude that Weyl
points exist in the TaAs band structure. We now determine
the total number of Weyl points and their exact positions.
This is a hard task, as the Weyl points are located at generic
k points without any little-group symmetry. For this
purpose, we calculate the integral of the Berry curvature
on a closed surface in k space, which equals the total
chirality of the Weyl points enclosed by the given surface.
Because of the fourfold rotational symmetry and mirror
planes that characterize TaAs, we only need to search for
the Weyl points within the reduced BZ—one-eighth of the
whole BZ. We first calculate the total chirality or monopole
charge enclosed in the reduced BZ. The result is 1, which
guarantees the existence of, and odd number of, Weyl
points. To determine precisely the location of each Weyl
point, we divide the reduced BZ into a very dense k-point
mesh and compute the Berry curvature or the “magnetic
field in momentum space” [35,38] on that mesh, as shown
in Fig. 3. From this, we can easily identify the precise
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FIG. 2. Nodal rings and Weyl points distribution, as well as Z2 and MCN for mirror planes. (a) 3D view of the nodal rings (in the
absence of SOC) and Weyl points (with SOC) in the BZ. (b) Side view from [100] and (c) top view from [001] directions for the nodal
rings and Weyl points. Once the SOC is turned on, the nodal rings are gapped and give rise to Weyl points off the mirror planes (see
movie in Supplemental Material [36]). (d) Top panel: Flow chart of the average position of the Wannier centers obtained by Wilson-loop
calculation for bands with mirror eigenvalue i in the mirror plane ZNΓ. (d) Bottom panel: The flow chart of the Wannier centers obtained
by Wilson-loop calculation for bands in the glide mirror plane ZXΓ. There is no crossing along the reference line (the dashed line),
indicating the Z2 index is even.
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Summary

- The accumulation of Berry phase is a phenomena with physical consequences. It is needed to explain the 
polarization in solids and as an addition to the band-theory of solids.  

- Insulators can be classified based on the topology of their electronic bandstructure, which leads to the 
prediction of conductive states at the interface of topological phases. 

- It is possible to employ WIEN2k+BerryPI for: 

• Polarization

• Chern Insulators: CherN.py

• Berry curvature maps

•  topological insulators

• Characterization of Weyl semimetals

ℤ2



Thank you!


