

XPS, XES, XAS, EELS, BSE

Peter Blaha

Institute of Materials Chemistry, TU Wien

•Illuminate sample with light of known energy, measure kinetic E of emitted electrons e⁻

 \rightarrow core-e⁻, Valence-DOS

Energy conservation:

$$\hbar\omega = \phi + E_{kin} + E_b$$

- φ: work function
- E_{kin}: kinetic E of e⁻
- E_b: bindingenergy of e⁻

UPS: UV (He-light, 21.1 und 40.4 eV), for valence-electrons
XPS, ESCA: X-rays (Al 1486 eV), for core and valence-electrons
Synchrotronradiation: UV or X-rays of "any" wavelength

Work function

XPS, core-level shifts

• Ionization potential of core- e^- , IP= $E^{tot}(N) - E^{tot}(N-1)$

• gives information on charge state and bonding of the atom

O-1s XPS on Cu(111)

adsorbed O is gone

free and adsorbed H₂O

adsorbed O and OH from H₂O splitting

free CO gas + adsorbed OH B.Eren etal., Science 2016, 351, 475–478

- Ionization potential of core- e^- , IP= $E^{tot}(N) E^{tot}(N-1)$
 - gives information on charge state of the atom
- core-eigenvalues ε_i are NOT a good approximation: ε_i =dE/dn
- **Slater's** "transition state": core-eigenvalues ε_i for half occupancy

• \triangle -SCF-calculation with and without core-hole: $E^{tot}(N) - E^{tot}(N-1)$

supercells to reduce hole-hole interaction

C 1s	exp.(eV)	ε _i	Δ -SCF or Slater
TiC	281.5	264.7	281.9

valence e⁻: bandstructure via ARPES

Abb. 3.11 a. UP-Spektren einer Cu(111)-Oberfläche bei Detektion normal zur Oberfläche und Varlation der Photonenenergie von 6 bis 11,5 eV. Als Energieachse dient die Bindungsenergie bezogen auf die Fermi-Energie, hier als Anfangsenergie der Elektronen bezeichnet [29].

Brillouinzone fcc:

valence PES: usually explained by DOS

a single DOS cannot explain the Edependency of PES

- $I = \sum_{atoms,l} N_{a,l} \sigma_{a,l}$
- $N_{a,l}$ = Partial DOS
- $\sigma_{a,l}$ = atomic cross section

Photoionization cross-sections: a guide to electronic structure

SiO₂ valence band XPS

Total DOS gives 5 peaks, but wrong intensities

Cross section modulated PDOS gives better intensities

Renormalized PDOS * σ gives perfect intensities

• renormalization according to the **inverse charge fraction** of an orbital within the atomic sphere + removal of interstital DOS: $N_{tot} = \sum_{atoms,l} N_{a,l} + N_{int}$

56 eV: almost no intensity till
-1 eV

7700eV: strong contribution from antibonding Pb-6s

Core-level spectroscopy (XES, XAS, EELS)

Dipole transitions between core and valence (conduction) band states

Peter Blaha

Institute of Materials Chemistry TU Wien

• Time dependent perturbation theory: $\hat{H}'(t) = \hat{H}'_0 \left(e^{iE_v t} + e^{-iE_v t} \right)$

• EM-radiation with energy ω , polarisation α and direction of propagation k acts on the momentum p of the electron

$$\vec{E} = \sum_{\vec{k},\alpha} \left[\vec{e}_{\alpha}(\vec{k}) e^{i(\vec{k}.\vec{x} - \omega t)} \right]$$

The transition probability W from state i to f is then given by **Fermi's "golden rule"** :

$$W_{f \leftarrow i} = \left\langle f_{f} \left| e^{i\vec{k}\cdot\vec{x}} \hat{e}_{\alpha}(\vec{k})\cdot\vec{p} \right| f_{i} \right\rangle^{2} \rho_{N}(E) \quad with \quad E = E_{f} - E_{i} - E_{\nu}$$
Number of states E-conservation with energy E

W: proportional to the square of the transition matrix element

e⁻,*k*

momentum of photons << momentum of e⁻;

momentum conservation \implies e⁻ cannot change its momentum

$$e^{i\vec{k}\cdot\vec{r}} = 1 + i\vec{k}\cdot\vec{x} + \dots$$

dipole quadrupole ... approximation

 $e^{i\vec{k}\cdot\vec{r}} \approx 1$ 1-3% error (even for keV X-rays), but: EELS (electron energy loss spectr.) may violate dipole approximation (selection rules!!)

$$\left\langle f_{f}\left|\hat{H}'\right|f_{i}\right\rangle = \hat{e}_{\alpha}\left\langle f_{f}\left|\vec{p}\right|f_{i}\right\rangle = \hat{e}_{\alpha}\left\langle f_{f}\left|\vec{r}\right|f_{i}\right\rangle$$

selection rules: $l \pm 1$

knock out a core e⁻

valence e⁻ fills core hole

measure the emitted X-ray

XES intensity given by the l±1
 partial DOS of the valence bands
 of the specific atom (with core
 state nl) times the squared
 transition matrix element.

core electrons are excited into the conduction band

 Each core shell introduces an absorption edge, (they are indexed by the principal number of a core level)
 K-1s, L₁-2s, L₂-2p_{1/2}, L₃-p_{3/2}

 XAS: given by the l±1 partial DOS of the conduction bands of the specific atom (with core state l) times the TME²

XAS: synchrotron EELS: microscope

 transition described by Fermis "golden rule" between initial (core) and final (conduction-band) state and the e⁻ or photon
 double differential cross section:

dipole approximation

$$\vec{q}\vec{R} << 1 \rightarrow e^{i\vec{q}\vec{R}} = 1 + i\vec{q}\vec{R} + \frac{(\vec{q}\vec{R})^2}{2!} + \dots$$
EELS XAS
$$\frac{\partial^2 \sigma}{\partial E \partial \Omega} \propto \sum_{I,F} \left| \langle I | \vec{q}\vec{R} | F \rangle \right|^2 \qquad \qquad \frac{\partial^2 \sigma}{\partial E \partial \Omega} \propto \sum_{I,F} \left| \langle I | \vec{\varepsilon}\vec{R} | F \rangle \right|^2$$

The polarization vector in XAS plays the same role as momentum transfer in (nonrelativistic) ELNES within the dipole approximation.

(TELNES3 can also handle non-dipole transitions + relativistic corrections)

core-valence spectroscopies give information on the local DOS (because of $\langle \Psi_{core} | r | \Psi_{val} \rangle$) of angular momentum character $\ell \pm 1$

"Final state" determines the spectrum:

•Emission spectroscopy:

Final state has filled core, but valence hole. This is usually well screened, thus one "sees" the groundstate.

Absorption spectroscopy:

Final state has a "hole" in core state, but additional e⁻ in conduction band. Core-hole may have a large effect on the spectrum

electron – hole interaction, "excitonic effects"

EELS in WIEN2k

supercell calculations as for XAS

TELNES3 task in w2web

Title: Cr L1 edge of first atom						
Atom: 1: Cr0+ -	Edge: L1 • (n=1 =0)					
Edge onset: 696 eV	Beam energy: 200 keV					
Energy grid: 0.0000 eV to 15.0000 e	eV in steps of 0.0500 eV					
Collection s.a.: 5.00 mrad	Convergence s.a.: 1.87 mrad					
Spectrometer broadening 0.50	eVQ-mesh: NR=5 NT=2					
Advanced settings:						
Branching ratio: (statistical if empty)						
Spinorbit splitting of core state (eV	/): (calculated if empty)					
Orientation sensitive: α= 0	°, β= 90 °, γ= 0 °					
Integrate over equivalent atoms:	to (all eq. atoms if empty)					
Detector position: 0_x 0.000 mrad	Ι, θ_y 0.000 mrad					
Modus: energy -						
Initialization: Calculate DOS Calculate rotation matrices write DOS Calculate rotation matrices						
Verbosity: basic -	File headers: Write headers (default) -					
Interaction potential: relativistic (recomm	nended) 🔻					
Q-grid: U uniform 🔽 θ_0=	(not used for uniform grid)					
Interaction order: all λ (default):	Final state selection rule: L=I +/- 1 (default)					
Extend potential beyond Rmt: n	max= bohr					
Set Fermi energy manually: EF	= Ry					
Read core state wavefunction:	filename= case.cwf					
Read final state wavefunctions: filename= case.finalwf						
Calculate DOS only						

Cr3C2@raphael.phys.washington.edu - Windows Internet Explorer							
@ @ -	See						
🚖 Favorites	🔠 🔹 🏉 Gmail	- Inbox - kevinjoriss	DS De Standaard Online	🚽 Cr3C2@raphael.phys.w 🗴			
Session: Cr3C2 /phys/users/jorissen/Cr3C2							
	2k	TELNES	\$3				
Execution	»	7 edit Cr3C2.ir	nes Edit input-file	for ELNES (InnesGen™)			
StructGen		Only if you	want to include sta	tes with higher energy			
initialize calo run SCF single prog	calc. edit Cr3C2.in1 Edit in1						
mini. positio	x lapw1 Calculate eigenvalues ✓ interactively						
<pre> Vtils. >> </pre> Vtils. >> Vtils. >> Vtils. >> Vtils. >>	x qtl-telnes Calculate partial charges 🗹 interactively						
DOS XSPEC TELNES	,	xtelnes3 Calculate ELNES spectra interactively					
Bandstructu	view Cr3C2.outputelnes display Cr3C2.outputelnes (optional)						
st uct file(s) iput files output files	edit Cr3C2.inb Edit input-file for BROADENING						
SCF files	umt. >>	x broadening	Broaden the spe	ectrum 🗹 interactively			
change ses change dir change info	sion	plot Plot ELNES					
<u>Configurati</u>	on	save_eels Save an elnes calculation into a directory					

■ when the e⁻ is not ionized, but stays in the solid:

 electron and hole are not correlated e-h are correlated

- needs to include e-h interaction in the excitation
- excitation is a two-particle process

Frenkel (localized) and Wannier (delocalized) excitons

importance of excitons (BSE):

In particular early 3d TM-compounds show a

- non-standard L₂/L₃ branching ratio (1:2)
- sometimes a completely different lineshape (TiO₂)
- ,wrong" SOC or CF splittings

Fully relativistic electron-hole interaction (BSE)

 Bethe-Salpeter-equation: L(12;1'2')
 solving a 2-particle (e⁻ - h) equation of large dimension (N_v N_c N_k ~ 100000)

$$\sum_{v'c'k'} (H^{eh}_{v'c'k',vck}) A^{\lambda}_{v'c'k'} = E^{\lambda} A^{\lambda}_{vck}$$

$$H^{eh} = H^{diag} + H^{dir} + 2H^{x}$$

$$H^{diag} = (E_{v,k} - E_{c,k})\delta_{cc'}\delta_{vv'}\delta_{kk'}$$

eigenvalue difference between hole (v) and electron(c) state

 $H_{vckv'c'k'}^{dir} = -\int d^3r \ d^3r' \ \Psi_{vk}(r) \Psi_{ck}^*(r') W(r,r') \Psi_{v'k'}^*(r) \Psi_{c'k'}(r')$ attractive screened static Coulomb interaction *W*; *W*~ ε^{-1}

$$H^{x}_{vckv'c'k'} = \int d^{3}r \ d^{3}r' \ \Psi_{vk}(r) \Psi^{*}_{ck}(r) \overline{v}(r,r') \Psi^{*}_{v'k'}(r') \Psi_{c'k'}(r')$$

e-h exchange with bare Coulomb potential v

R. Laskowski, P. Blaha, Phys. Rev. B, 81, 075418 (2010)

WIEN

Decomposition of ε_2 into the excitation from $p_{1/2}$ and $p_{3/2}$ states cross terms suppress the L₃ branch and enhance L₂

$$\varepsilon_{2}^{xx}(\omega) = \frac{8\pi^{2}}{\Omega} \sum_{\lambda} \left| \sum_{hek} A_{hek}^{\lambda} \frac{\langle h\mathbf{k} | -i\nabla_{x} | e\mathbf{k} \rangle}{\varepsilon_{e\mathbf{k}} - \varepsilon_{h\mathbf{k}}} \right|^{2} \times \delta(E^{\lambda} - \omega)$$