

hex2rhomb

 converts hexagonal to rhombohedral coordinates needed for R cells. (Remember: WIEN2k uses hexagonal a,c; but rhombohedral atomic positions for R spacegroups)

x struct2cif

writes a cif file from your optimized structure

x xyz2struct

converts POSCAR to struct file

run123_lapw

runs initialization+scf with different precisions

clean_lapw

 removes temporary and large files once a case has been finished to save disk space

migrate_lapw [FLAGS OPTIONS] [user@]host:path/case-dir

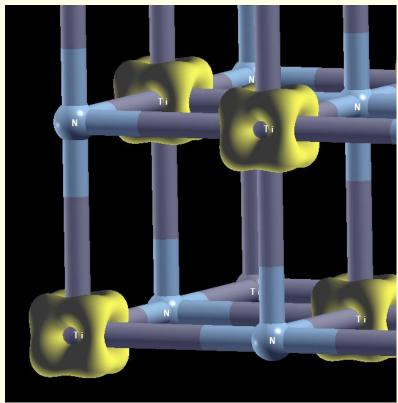
- -put -> transfer of files to a remote host (default)
- -get -> transfer of files from a remote host
- -all -> the complete directory is copied
- -start -> only files to start an scf cycle are copied (default for put)
- -end -> only new files resulting from an scf cycle are copied (default for get)

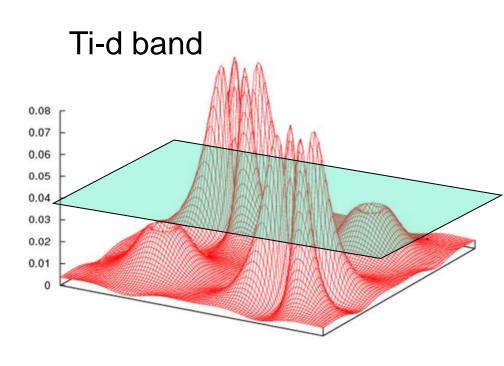
create_add_atom_clmsum_lapw

 The script creates a better starting density for a case, where you already have a scf-solution for a "similar" case (differs by ONE atom).

reduce_rmt_lapw [-r XX / -a XX:Rxx,YY:Ryy,... -sp -vxc X]

 when touching spheres occur during structure optimization, use this script to reduce RMTs and extrapolate the density


min_lapw (+mini): alternative position optimization, can also do (limited) MD (molecular dynamic)



x 3ddens

 creates 3D electron densities (XSF file), useful for empty structures/surfaces, convenient for STM simulations

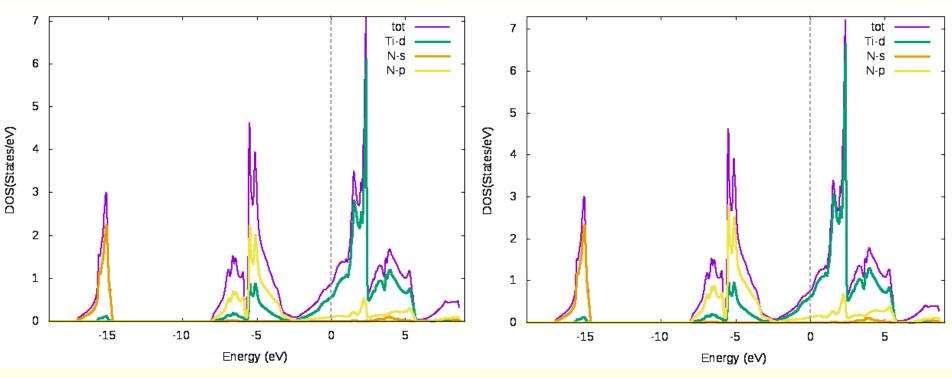
x rendos

 creates renormalized partial DOS (sum of PDOS = total DOS; no interstitial) by a least squares fit and optimizing the orbital localization

•	Orbital	fract	(outputst)	fract (opt.)	charge-tot	charge-to	: (opt.)

Ti3d	0.78	0.91	1.70	1.85
Ti4s	0.11	0.26	0.13	0.48
Ti4p	0.30	0.24	0.25	1.05
<i>N 2s</i>	0.81	0.96	1.49	1.55
■ <i>N 2p</i>	0.74	0.80	3.13	3.92

Sum of spheres (should be: 9.00) 6.70 8.86
2.3 e from interstitial → increased atomic charges

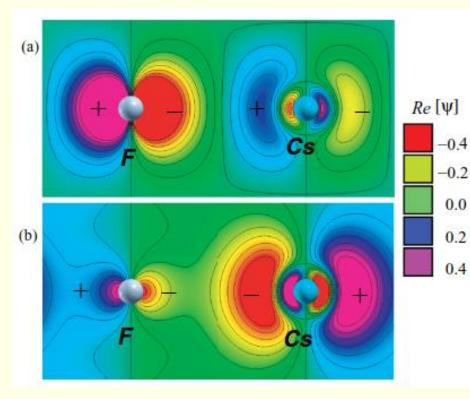


DOS

rendos

renormalized DOS

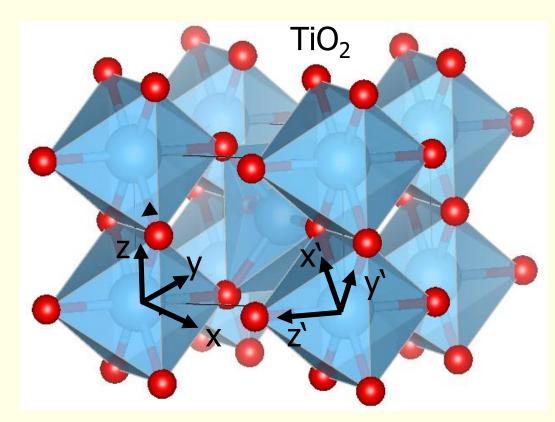
x dipan


- This program calculates the magnetic dipolar hyperfine field and the dipolar magnetocrystalline anisotropy by a direct lattice summation over the magnetic moments of all sites.
- elast Irelast
 - elastic constants for different crystal structures
- x fsgen
 - 2D Fermi surface plots in various planes of the BZ
- x lapw3
 - X-Ray structure factors (Fourier transformation of the density)

x lapw7

 2D plot of wavefunktion (modulus, real or imag.part) of one eigenvalue at one k-point (bonding – antibonding analysis because of sign)

antibonding wavefunction at X in F-p band


bonding wavefunction at X in Cs-p "semicore"-band

x qtl

- partial charges for f-electrons,
- in different coordinate systems (octahedra for e_g/t_{2g} analysis),
- for spin-orbit analysis (p-1/2 3/2; ...);
- "cross" partial charges for telnes3

x telnes3

 simulation of core-electron energy loss spectra (EELS), can include nondipole transitions (needs some knowledge of the experimental setup).
Valence-EELS available in "optics".

x tetra

- DOS for 1 k-point by Gaussian (Lorentzian) broadening.
- summation over different PDOS (eg. sum all O atoms in a structure)

x animxsf

 creates an animated xsf file from the scf file of a position-optimization, displayed by: xcrysden --xsf case.xsf (or VESTA)

x arrows

- allows to display the "forces acting on all atoms" or
- the "differences between two structures"
- using arrows in Xcrysden (see UG)

structeditor

octave: helpstruct

- a2adist
- *mina2adist*
- addatom
- addeqatom
- copyatom
- getaname
- *getar0*
- *getazz*
- Ioadstruct
 - keconventional * converts structure into the convention
- makeprimitive
- makesupercell
- makesurface
- mergestruct
- movealla

- * calculates distance between atoms
- * calculates minimum distance between atoms
- * adds an atom to the structure
- * adds an atom and all equivalent
- * creates a copy of an atom
- * converts atomic number into atomic symbol
- * calculates r0 from atomic number
- * converts atomic name into atomic number
- * reads Wien2k structfile
- makeconventional * converts structure into the conventional form
 - * converts structure to the primitive form
 - * creates supercell
 - * creates surface
 - * merges two structures
 - * moves all atoms with vector vec

structeditor

- replaceatom
- replaceeqatoms
- rescale c
- rescale c 2
- rescale_c_3
- rmatom
- rmeqatoms
- rotateall
- rotateatomlist
- rotatethreedim
- savestruct
- shiftatomlist
- showequivalent
- showstruct
- smultatom
- sshift
- 11 help command

- * replaces an atom with other atom
- * replaces an atom and all equivalent with other atoms
- * rescales c for surface cell (vacuum in the middle)
- * rescales c for surface cell (vacuum above)
- * rescales c for surface cell (vacuum outside)
- * removes an atom
- * removes an atom and all equivalent
- * rotates all atoms around z with a given angle
- * rotates specified atoms around z with a given angle
- * rotates specified atom around vector with given angle
- * saves crystal structure
- * shifts specified atoms by a vector
- * outputs list of equivalent atoms
- * displays structure (using xcrysden)
- * creates symmetry equivalent positions
- * symmetric shifts of equivalent atoms

* gives help

WIENNCM: noncollinear magnetism code (free for registered users)

spin-spirals (no spin-orbit)

fully non-collinear WIEN2k

BSE code (free for registered users)

valence and core excitons, including spin-orbit core states

GAP2-GW code from Hong Jiang

state of the art quasiparticles, band gaps

CFP by Pavel Novak

crystal field parameters in 4f systems

DMFT Dynamical mean field theory (for correlated electrons)

- TRIQS
- DFT+eDMFT (By K. Haule)

SKEAF by P.M.C. Rourke.

 Extracts quantum oscillation frequencies and effective masses from fermi surfaces (De Haas-van Alphen)

ATAT@WIEN2k by M. Chakraborty et al.

 Interface between WIEN2k and the <u>"Alloy Theoretic Automated Toolkit"</u> (<u>ATAT</u>), which is a cluster expansion package for simulations of phase diagrams of alloys

ElaStic (and similar tools, see wien2k.at)

for elastic constants (of various lattices)

• **VESTA** (visualization program)

displays also partial unitcells and atoms outside the unit cell if part of a coordination polyhedra; (transparent) coordination polyhedra, multiple bonds (thick and thin rods for small and larger distances); can plot xsf files; allows manipulation of the structure (VESTA → cif → struct)