

WIEN97: ~500 users WIEN2k: ~3900 users

WIEN2k software package

An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties

> Peter Blaha Karlheinz Schwarz Georg Madsen Dieter Kvasnicka Joachim Luitz Robert Laskowski Fabien Tran Laurence Marks

November 2001 Vienna, AUSTRIA Vienna University of Technology

http://www.wien2k.at

- WIEN2k consists of many independent F90 programs, which are linked together via C-shell scripts.
- Each "case" runs in his own directory './case
- The "master input" is called
- Initialize a calculation:
- Run scf-cycle:

case.struct

- init_lapw
- run_lapw (runsp_lapw)
- You can run WIEN2k using any www-browser and the w2web interface, but also at the command line in an xterm.
- Input/output/scf files have endings as the corresponding programs:
 - case.output1...lapw1; case.in2...lapw2; case.scf0...lapw0
- Inputs are generated using STRUCTGEN(w2web) or makestruct and init_lapw

Based on www

- WIEN2k can be managed remotely via w2web
- Important steps:
 - start w2web on all your hosts
 - login to the desired host (ssh)
 - w2web (at first startup you will be asked for username/password, port-number, (master-)hostname. creates ~/.w2web directory)
 - use your browser and connect to the (master) host:portnumber
 - firefox http://fp98.zserv:10000
 - create a new session on the desired host (or select an old one)

Welcome to w2web the fully web-enabled interface to WIEN2k

w2web GUI (graphical user interface)

Structure generator

- spacegroup selection
- import cif or xyz file
- step by step initialization
 - symmetry detection
 - *automatic input generation*
- SCF calculations
 - Magnetism (spin-polarization)
 - Spin-orbit coupling
 - Forces (automatic geometry optimization)
- Guided Tasks
 - Energy band structure
 - DOS
 - Electron density
 - X-ray spectra
 - Optics

StructGen™ initialize calc. run SCF single prog. optimize(V,c/a) mini. positions

Utils. >> Tasks >>

> Files >> struct file(s) input files output files SCE files

Session Mgmt. >> change session change dir change info

Configuration

Usersguide html-Version pdf-Version

ldea and realization

b٧

Session: TiC

/area51/pblaha/lapw/2005-june/TiC

StructGen™

Sav	e Structu			Structure		J		
Title:	TiC							
Lattic								
Type: P	F	~						
F								
B		Sp	acegro	oups fron	1			
CXY CYZ		Bill	bao Cr	yst Serv	er			
CXZ								
R								
H 1 P1		~						
	e paran	notor	s in Å	*				
	-			28000038(o- 4 32	28000038	24	
	= 90.000			000000	v = 90.0			
u	- 30.000	500	p- <u>30</u> .	000000	γ-30.	00000		
Inequi	ivalent	Atom	is: 2					
Atom	1 : Ti			Z=22.0	RN	/T=2.00	100	remove ato
								_
P	os 1: x=	= 0.000	00000	y=0.000	00000	Z=0.00	000000	remove
	dd posit	tion						
					_			
a				7 00		AT 4 00		
				Z=6.0	RN	/IT= 1.90	00	remove ato
a Atom		- 0 500	100000	Z = 6.0 V = 0.500		/T= 1.90		remove atc

 $P4_2/mnm$ D_{4h}^{14}

No. 136

 $P 4_2/m 2_1/n 2/m$

Structure given by:

spacegroup lattice parameter positions of atoms (basis)

Rutile TiO₂: P4₂/mnm (136) a=8.68, c=5.59 bohr Ti: (0,0,0) O: (0.304,0.304,0)

~ 1									
							14	¹ 4	1
		+)+ <u>1</u> + <u>1</u>	$\begin{array}{c} + \bigoplus^{-} \\ - \bigoplus^{-} \\ - \bigoplus^{-} \\ + \bigoplus^{-} \\ - \bigoplus^{-} \\ + \bigoplus^{-} \\ - \bigoplus^{-} \\ - \bigoplus^{-} \\ - \bigoplus^{-} \\ + \bigoplus^{-} \\ - \bigoplus^{-} \\ - \bigoplus^{-} \\ + \bigoplus^{-} \\ - \bigoplus^{-} \\ - \bigoplus^{-} \\ + \end{array}$				1 4 4
					Origin at cer	ntre (mmn	1)		
Number Wyck and po	r of p off no int sy	ositions, tation, mmetry			Co-ordinates of equ	uivalent po	sitions		litions limiting ble reflections
								General:	
16	k	1	$x,y,\overline{z};$ y,x,z;	$\bar{x}, \bar{y}, \bar{z};$ $\bar{y}, \bar{x}, z;$	$\begin{array}{l} \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z; \\ \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z; \\ \frac{1}{2} + y, \frac{1}{2} - x, \frac{1}{2} + z; \\ \frac{1}{2} + y, \frac{1}{2} - x, \frac{1}{2} - z; \end{array}$	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - y, \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + x, 1$	$\frac{1}{2} - z;$ $\frac{1}{2} + z;$	<i>hk</i> 0: No 0 <i>kl</i> : <i>k</i> +	conditions conditions I=2n conditions
								C	
8	j	т	x, x, z; $x, x, \overline{z};$	$ar{x},ar{x},z;$ $ar{x},ar{x},ar{z};$	$\frac{\frac{1}{2} + x, \frac{1}{2} - x, \frac{1}{2} + z;}{\frac{1}{2} + x, \frac{1}{2} - x, \frac{1}{2} - z;}$	$\frac{1}{2} - x, \frac{1}{2} + x,$ $\frac{1}{2} - x, \frac{1}{2} + x,$	$\frac{1}{2} + z;$ $\frac{1}{2} - z.$		as above, plus
8	i	т	<i>x,y</i> ,0; <i>y,x</i> ,0;	$ \bar{x}, \bar{y}, 0; $ $ \bar{y}, \bar{x}, 0; $	$ \begin{array}{c} \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2}; & \frac{1}{2} - \\ \frac{1}{2} + y, \frac{1}{2} - x, \frac{1}{2}; & \frac{1}{2} - \end{array} $	$x, \frac{1}{2} + y, \frac{1}{2}; y, \frac{1}{2} + x, \frac{1}{2}.$		} no extra c	onditions
8	h	2	$0,\frac{1}{2},z;$ $\frac{1}{2},0,z;$	$0,\frac{1}{2},\bar{z};$ $\frac{1}{2},0,\bar{z};$	$\begin{array}{cccc} 0, \frac{1}{2}, \frac{1}{2} + z; & 0, \frac{1}{2}, \frac{1}{2} - z \\ \frac{1}{2}, 0, \frac{1}{2} + z; & \frac{1}{2}, 0, \frac{1}{2} - z \end{array}$	z; z.		hkl: h+k	z=2n; l=2n
4	g	mm	<i>x</i> , <i>x</i> ,0;	<i>x</i> , <i>x</i> ,0;	$\frac{1}{2} + x, \frac{1}{2} + x, \frac{1}{2}; \frac{1}{2} -$	$x, \frac{1}{2} - x, \frac{1}{2}$.		y	
4	f	mm	<i>x</i> , <i>x</i> ,0;	<i>x</i> , <i>x</i> ,0;	$\frac{1}{2} + x, \frac{1}{2} - x, \frac{1}{2}; \frac{1}{2} -$	$x, \frac{1}{2} + x, \frac{1}{2}.$			X
4	е	mm	0,0, <i>z</i> ;	0,0, <i>ž</i> ;	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} + z; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} - z$	5.			
4	d	4	$0, \frac{1}{2}, \frac{1}{4};$	$\frac{1}{2}, 0, \frac{1}{4};$	$0, \frac{1}{2}, \frac{3}{4}; \frac{1}{2}, 0, \frac{3}{4}.$		Z		1
4	С	2/m	$0,\frac{1}{2},0;$	$\frac{1}{2},0,0;$	$0,\frac{1}{2},\frac{1}{2}; \frac{1}{2},0,\frac{1}{2}.$				
2	b	mmm	$0,0,\frac{1}{2};$	$\frac{1}{2}, \frac{1}{2}, 0.$					
2	a	mmm	0,0,0;	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$			0		
									-

Specify:

- Number of nonequivalent atoms
- Iattice type (P, F, B, H, CXY, CXZ, CYZ) or spacegroup symbol
 - if existing, you must use a SG-setting with inversion symmetry:
 - Si: ±(1/8,1/8,1/8), not (0,0,0)+(1/4,1/4,1/4)!
- lattice parameters a,b,c (in Å or bohr)
- name of atoms (Si) and fractional coordinates (position)
 - as numbers (0.123); fractions (1/3); simple expressions (x-1/2,...)
 - in fcc (bcc) specify just one atom, not the others in (1/2,1/2,0; ...)
- "save structure "
 - updates automatically Z, r0, equivalent positions
- set RMT and continue": (specify proper "reduction" of NN-distances)
 - non-overlapping "as large as possible" (saves time, may require L^{vns}=6(8))
 - RMT for sp (d) elements 10-20 % smaller than for d (f) elements
 - largest spheres not more than 50 % larger than smallest sphere
 - Exception: H in C-H or O-H bonds: RMT~0.6 bohr (RKMAX~3-4)
 - Do not change RMT in a "series" of calculations, RMT equal for same atoms
- "save structure save+cleanup"

init_lapw

- step-by-step or batch initialization
- symmetry detection (F, I, Ccentering, inversion)
- input generation with recommended defaults
- quality (and computing time) depends mainly on k-mesh and R.Kmax (determines #PW)

run_lapw

- scf-cycle
- optional with SO and/or LDA+U
- different convergence criteria (energy, charge, forces)
- save_lapw tic_gga_100k_rk7_vol0
 - cp case.struct and clmsum files,
 - mv case.scf file
 - rm case.broyd* files

The convergence criterion in APW is the product of R_{MT}.Kmax

$$\Psi = \sum_{K_n}^{KMAX} c_{K_n} e^{iK_n r}$$

<u>http://www.wien2k.at/reg_user/faq/rkmax.html</u>
 medium quality convergence for **smallest** atom:

- basis set scales with RKmax³
 cputime scales with N_{PW}³
- increasing Rkmax by 10 %
 → doubles cputime

Rkmax Element 3.0 Н 4.5 Li Be, B, Si 5.0 5.5 C, P 6.0 N, S 6.5 O, Cl, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Al 7.0 F 7.5 Sc-Cr, Ga-Br, Y-Mo 8.0 Mn-Zn, Ru-Cd, In-I, La, Ce, Hf-Re 8.5 Os-At, Pr-Lu, Ac-Lr

START with SMALL Rkmax (relaxation), increase/test later

• Replace the "integral" of the BZ by a finite summation on a mesh of "kpoints" $\rho(r) = \sum_{k_n < E_F} \int \psi_k^* \psi_k d^3 k = \sum_{k_n < \psi_h^*} \psi_k \psi_k$

$$\rho(r) = \sum_{n} \int \psi_{k,n}^* \psi_{k,n} d^3 k = \sum_{k,n} w_{k,n} \psi_k^* \psi_k$$

• weights $W_{k,n}$ depend on k and bandindex n (occupation)

- for full "bands" the weight is given by "symmetry"
 - w(Γ)=1, w(x)=2, w(△)=4, w(k)=8

shifted "Monkhorst-Pack" mesh

 for partially filled bands (metals) one must find the Fermi-energy (integration up to NE) and determine the weights for each state E_{k,n}

- Inear tetrahedron method+"Bloechl" corrections (TETRA), T=0, inconsistent forces
- "broadening methods"
 - gauss-broadening (GAUSS 0.005)
 - temperature broadening (Fermi-Dirac smearing)
 - TEMP 0.002 (-TS/2 correction, extrapolating to T=0, inconsistent forces)
 - TEMPS 0.002 (finite T (~300K) result, -TS corr., **consistent** forces)

broadening useful to damp scf oszillations, but dangerous (magnetic moment)

Er in diamond structure

Volume per atom (Å³)

X kgen (generates k-mesh and reduces to irreducible wedge using symmetry)

- automatically "adds inversion"
 - time inversion holds and E(k) = E(-k)
 - except in magnetic spin-orbit calculations (x -so kgen; uses case.ksym file)
 - x -fbz kgen (generates "full mesh" in BZ)
- always "shift" the mesh for scf-cycle
 - gaps often at Γ ! (might not be in your mesh)
- small unit cells and metals require large k-mesh (1000-100000)
- Iarge unit cells and insulators need only 1-10 k-points
- use at first a fairly coarse mesh for scf/relaxations
- continue later with finer mesh
 - mesh was good if nothing changes and scf terminates after few (3) iterations
- use even finer meshes for DOS, spectra, optics,...

You can specify the k-mesh by:

- Total number of k-points in full BZ (typically 1 50000)
 - 1000 = 10x10x10 in cubic sym
 - = 13x13x5 in tetragonal with c/a=2.2
- 3 divisions for the 3 rec.latt.vectors (no check, give correct ratio):
 - 0
 - 4 4 4 (for a cubic insulator), or 20 20 1 (for a metallic surface slab)
- delta K (in bohr⁻¹, typically between 0.5 0.02)
 - **-**1
 - **0.1**
- init_lapw –prec 0-3 (for metals) or 0n-3n (for insulators) will set the k-mesh automatically according to the size of the cell.
- It will also set ALL other parameters (RKMAX, GMAX, L-VNS, RMT, HDLOs, FFT-mesh) according to the desired precision.

All programs are executed via the "master" shell-script x_lapw x lapw2 –up –orb This generates a "def" file: lapw2.def 5, 'tin.in2c', 'old', 'formatted' 6, 'tin.output2up', 'unknown', 'formatted' 8, 'tin.clmvalup', 'unknown', 'formatted' 10, './tin.vectorup', 'unknown', 'unformatted' and executes: lapw2c lapw2.def All WIEN2k-shell scripts have long and short names: ■ x_lapw; runsp_lapw, runfsm_lapw → x; runsp; runfsm All scripts have a "help" switch "-h", which explains flags and options (without actually execution) x -h x lapw1 -h

scf-cycle

run_lapw [options]		(for nonmagnetic cases)
	<i>-ec 0.0001</i>	convergence of total energy (Ry)
	<i>-cc 0.0001</i>	convergence of charge distance (e ⁻)
	<i>-fc 1.0</i>	convergence of forces (mRy/bohr)
	-it (-it1,-it2, -noHinv)	iterative diagonalization (large speedup)
	■ - <i>p</i>	parallel calculation (needs .machines file)
	■ <i>-SO</i>	add spin-orbit (only after "initso")
	Spacegroups without inversion u	se automatically lapw1c, lapw2c (case.in1c,in2c)

case.scf: master output file, contains history of the scf-cycle

most information is stored with some "labels" (grep :label case.scf)

■ :ENE :DIS	:FER :	GAP :CTO001	. :NTO00	1	:QTL001
• :FGL002: 2.A	ГОМ	13.767	13.767	0.000	total forces
	·POSx	YY			

Getting help

",help switch" of all WIEN2k-scripts

help_lapw:

*_lapw –h

- opens usersguide.pdf; Use ^f keyword to search for an item ("index")
- html-version of the UG: (\$WIENROOT/SRC_usersguide/usersguide.html)

<u>http://www.wien2k.at/reg_user</u>

- FAQ page with answers to common questions
- Update information: When you think the program has an error, please check newest version
- Textbook section: DFT and the family of LAPW methods by S.Cottenier
- Mailing-list:
 - subscribe to the list (always use the same email)
 - full text search of the "digest" (your questions may have been answered before)
 - posting questions: Provide sufficient information, locate your problem (case.dayfile, *.error, case.scf, case.outputX).
 - "My calculation crashed. Please help." This will most likely not be answered.

"QTL-B" value too large - STOP (or :WARN): "ghostbands"

- identify for which eigenvalue, atom and l it happens, check E_F (case.scf2, case.output2)
- identify the corresponding linearization energies in case.scf1
- change the corresponding linearization energy in case.in1
 - compare and check with :EPL and :EPH lines in case.scf2
 - default E-parameters are adapted automatically but may need changes for
 - surfaces, molecules (negative EF) or heavy elements (EF often larger than 1.0)
 - add a local orbital with ü (HDLO) (or adjust its energy)
- if QTL-B occurs for an atom with large RMT (and you have other atoms with small RMT), reduce RMT ("numerical linear dependency")

scf-cycle diverges (grep :DIS case.scf):

- check structure (most likely a wrong structure caused divergence);
- check E-parameters (see above), check :NEC01 (correct number of e⁻)
- Im *.broyd* case.scf; x dstart
- set STIFFER in case.inm

2 0.30

2 0.30

- f (d) wavefunctions have a large E-dependency in cases with large RMT
 Cd_dd
 Ed=1
- For high precision calculations extend the basis set with a HDLO (high derivative LO):

$$\Phi_{K_n} = \sum_l A_{lm}(K_n) u_l(E_l, r) Y_{lm}$$

$$\phi_{l,atom} = (A_{lm} u_{lm} + B_{lm} \dot{u}_l) Y_{lm}$$

$$\phi_{l,atom} = (A_{lm} u_{lm} + C_{lm} \ddot{u}_l) Y_{lm}$$

0.010 CONT 1

0.010 CONT 2

APW

10

HDLO

F.Karsai et al., CPC 220, 230(2017)

case.klist, case.in2

GAMMA	0	0	0	40	1.0	IX, IY, IZ, IDIV, WEIGHT
•	1	0	0	40	6.0	
• • • •						
• X	40	0	0	40	3.0	
END						

case.in2:

$$\rho(r) = \sum_{IM} \rho_{LM}(r) Y_{LM}(\hat{r}) \qquad \rho(r) = \sum_{G} \rho_{G} e^{iGr}$$

Energy bands

- classification of irreducible representations
- ´character-plot´ (emphasize a certain band-character)
- Density of states
 - including partial DOS with I and m- character (eg. p_x , p_y , p_z)
- Electron density, potential
 - total-, valence-, difference-, spin-densities, ρ of selected states
 - 1-D, 2D- and 3D-plots (Xcrysden)
 - X-ray structure factors
 - Bader 's atom-in-molecule analysis, critical-points, atomic basins and charges
 (∇ρ.n = 0)
 - spin+orbital magnetic moments (spin-orbit / LDA+U)
- Hyperfine parameters
 - hyperfine fields (contact + dipolar + orbital contribution)
 - Isomer shift
 - Electric field gradients
 - NMR chemical and Knight shifts

File:

ATOM

ATOM.

Title

3 0

1

2

- eventually:
 - x kgen
 - edit case.in1 (larger Emax)
 - x lapw1

```
x lapw2 –qtl
```

 $\Psi_{\rho} * \Psi_{\rho} = 1 = q_{out} + \sum_{t=1}^{at} \sum_{l=1}^{t} q_{t,l}$

case.outputt

integrated DOS

case.dos1ev (3ev)

- text-file for plotting
- E-zero at E_F

Session: TiC /susi/pblaha/lapw/TiC

Density of states

Iocal rotation matrix:

- transfers z (y) into highest symmetry
- reduces terms in LM series
- "chemical" interpretation
 - p_x is different from p_y

- see case.struct and case.outputs
- x qtl (instead of x lapw2 -qtl)
 - f-orbitals
 - qtls for different coordinate system (eg. "octahedral" in TiO₂)
 - relativistic basis ($p_{1/2}$ - $p_{3/2}$ or $d_{3/2}$ - $d_{5/2}$ splitting in so calculation)
 - for angular dependend TELNES (ISPLIT 88, 99)

Energy bands

- classification of irreducible representations
- ´character-plot´ (emphasize a certain band-character)
- Density of states
 - including partial DOS with I and m- character (eg. p_x , p_y , p_z)
- Electron density, potential
 - total-, valence-, difference-, spin-densities, ρ of selected states
 - 1-D, 2D- and 3D-plots (Xcrysden)
 - X-ray structure factors
 - Bader 's atom-in-molecule analysis, critical-points, atomic basins and charges ($\nabla \rho . \vec{n} = 0$)
 - spin+orbital magnetic moments (spin-orbit / LDA+U)
- Hyperfine parameters
 - hyperfine fields (contact + dipolar + orbital contribution)
 - Isomer shift
 - Electric field gradients

Theory to characterize atoms and chemical bonds from the topology of the electron density, by R.F.Bader (http://www.chemistry.mcmaster.ca/faculty/bader/aim/aim_0.html)

Electron density of C₂H₄

- Bonds are characterized by "critical points", where $\nabla \rho = 0$

•density maximum: (3,-3); 3 negative curvatures λ, (at nucleus or non-NM)
•bond CP: (3,-1): 2 negative, 1 positive λ (saddle point)
•positive (and large) Laplacian: ionic bond
•negative Laplacian: covalent bond
•bridge CP: (3,1)
•cage CP: (3,3) (minimum)

trajectories of constant $~\nabla\rho$ originating at CPs in $\rm C_2H_4$

AIM-III

• "Atoms" are regions within a zero-flux surface $\nabla \rho \cdot \vec{n} = 0$

 ρ of C_2H_4 with zero-flux lines defining atomic basins

AIM-IV

2 tools: x aim Or critic2 (see unsupported software)

Bader analysis of some inorganic compounds:

	ρ (e/A³)	Δρ (e/A⁵)	Q (e)	
Cl ₂	1.12	-6.1	-	Cl_2 more covalent then I_2
I ₂	0.48	-0.9	-	
TiC	0.51	1.8	1.7	
TiN	0.47	3.9	1.7	more ionic, but less charge?
TiO	0.43	5.8	1.5	less ionic then TiC ?
KCI	0.08	1.2	0.6	

x aim –up: gives "unique" magnetic moments/atom

x aim

You must have a "good" scf-density (case.clmsum)

no core leakage, LMs up to L=8-10 in case.in2

SURF 1 20 0.0 1.570796327 20 0.0 0.785398163 0.07 1.0 4 1.65 0.1 3 3 3 IRHO WEIT 30 END	atom in center of surface (including MULT) theta, 20 points, from zero to pi/2 phi, from 0 to pi/4 (depends on symmetry!!) step along gradient line, rmin (has reached an atom) initial R for search, step (a.u) nshell "INTEGRATE" rho WEIT (surface weights are available in case.surf) 30 radial points outside min(RMIN,RMT)
CRIT 1 ALL 3 3 3 END	atom around you search for critical points two, three, four, all (dimers,trimers,all=2+3) nshell
	• critical_points_ang (converted units) λ_3 , ch, laplacian, rho

Total energy and forces

- optimization of internal coordinates, (MD, BROYDEN)
- cell parameter only via E_{tot} (no stress tensor)
- elastic constants for cubic, hexagonal, and tetragonal cells
- Phonons via supercells
 - interface to PHONON (K.Parlinski) bands, DOS, thermodynamics, neutrons
 - interface to PHONOPY (A. Togo)
 - http://www.wien2k.at/reg_user/unsupported
- Spectroscopy
 - core level shifts
 - X-ray emission, absorption, electron-energy-loss (with core holes)
 - core-valence/conduction bands including matrix elements and angular dep.
 - optical properties (dielectric function in RPA approximation, JDOS including momentum matrix elements and Kramers-Kronig)
- fermi surface: 2D, 3D (using XcrysDen)

• xcrysden --wien_fermisurface tin.struct

- choose a good k-mesh (eg. 10000 points)
- plot the FS for all bands which cross E_F and compare to band structure

- for 2D plots there is also a WIEN2k-tool "fsgen" (see UG)
- SKEAF (<u>www.wien2k.at/reg_users/unsupported</u>): quantum oszillations

Total energy and forces

- optimization of internal coordinates, (MD, BROYDEN)
- cell parameter only via E_{tot} (no stress tensor)
- elastic constants for cubic, hexagonal, and tetragonal cells
- Phonons via supercells
 - interface to PHONON (K.Parlinski) bands, DOS, thermodynamics, neutrons
 - interface to PHONOPY (A. Togo)
 - http://www.wien2k.at/reg_user/unsupported
- Spectroscopy
 - core level shifts
 - X-ray emission, absorption, electron-energy-loss (with core holes)
 - core-valence/conduction bands including matrix elements and angular dep.
 - optical properties (dielectric function in RPA approximation, JDOS including momentum matrix elements and Kramers-Kronig)
- fermi surface: 2D, 3D (using XcrysDen)

$$E_{A_x B_y}^{cohes.} = E^{crystal} - x E_A^{atom} - y E_B^{atom}$$

Ecrystal: scalar-relativistic valence (or approx. SO)

E^{atom} : LSTART: fully-relativistic → inconsistent description

➔ for heavier elements (2nd row):

supercell with one atom in a ~30-40 bohr distorted FCC box (identical RMT, 1 k-point, equivalent RKmax, spinpolarized, iterative diagonalization)

RMT^A=2.0, RMT^B=1.8, Rkmax=7 \rightarrow RKmax^A=7*2.0/1.8, RKmax^B=7

Lattice parameters, volume, c/a ratio only via total energies:

- x optimize [-job "run –ec 0.000001" -save pbe]: creates a series of "struct" files + script "optimize.job"
 - select volume or c/a, ...
 - select number of cases and desired changes in volume (in % of V₀)
- edit optimize.job
 - adapt to your need: change / uncomment various lines, eg.:
 - replace "run" by "runsp" or add options (-min _fc 1 _orb _i 80 _p _fc 1.0)
 - modify "save_lapw" line (with more specific names)
- execute optimize.job
- plot (analyse) the results (eplot –a pbe)
- combinations of volume and c/a are possible: 2Doptimize
 - "x optimize" always uses case_initial.struct (if present)
 - do a "volume" optimization to create case_vol_xx.struct files
 - copy the respective case_vol_xx.struct file to case_initial.struct
 - x optimize with "c/a" for this particular volume and proceed as above.
- optimize_abc_lapw: for 2D (a,c) or 3D (a,b,c) optimization

WIEN "preserves" symmetry:

- c/a optimization of "cubic" TiC:
 - change c lattice parameter in TiC.struct (tetragonal distortion, #sym.op=0)
 - init_lapw
 - change c back to cubic
 - x optimize ...
- "Jahn-Teller" distortion:

- when you start with a perfect octahedra, you will never get any distortion
- \rightarrow start with slightly distorted positions

4x4x4 supercells: P (64), B (32), F (16) atoms

 $\sqrt{2}x\sqrt{2}$ supercells (1 \rightarrow 2 atoms)

Program "supercell":

- start with "small" struct file
- specify number of repetitions in x,y,z (only integers, e.g. 2x2x1)
- specify P, B or F lattice
- add "vacuum" for surface slabs (only (001) indexed surfaces)
- shift all atoms in cell

You must break symmetry !!! (otherwise sgroup will restore your original struct file)

- replace (impurities, vacancies) or
- displace (phonons) or
- *label* at least 1 atom (core-holes, specific magnetic order; change "Fe" to "Fe1"; this tells the symmetry-programs that Fe1 is NOT a Fe atom!!)
- "supercell" works only along unit-cell axes!!!

requires octave (matlab) and xcrysden (visualization)allows complex operations on struct-files

octave

```
s=loadstruct("GaN.struct")
```

```
# make an orthorhombic supercell and visualize it
a=[1 0 0; 1 1 0; 0 0 2]
sout=makesupercell (s,a);
showstruct(sout);
```

```
# save it as test.struct
savestruct (sout,"test.struct");
```

```
# get help on all commands
helpstruct
```


2D-slabs with finite number of layers with "vacuum" in 3rd dimension
bcc (001) 7 layers

bcc (001) 7 layers:

Total energies and atomic forces (Yu et al.; Kohler et al.)

Total Energy:

- Electrostatic energy
- Kinetic energy
- XC-energy

$$U[\rho] = \frac{1}{2} \int d^{3}\vec{r} \ \rho(\vec{r}) V_{es}(\vec{r}) + \frac{1}{2} \sum_{\alpha} Z_{\alpha} V_{es}^{\alpha}(\vec{r})$$
$$T[\rho] = \sum_{i} n_{i} \varepsilon_{i} - \int d^{3}\vec{r} \ \rho(\vec{r}) V_{eff}(\vec{r})$$
$$E_{xc}[\rho] = \int d^{3}\vec{r} \ \rho(\vec{r}) \varepsilon_{xc}(\vec{r})$$
$$\vec{F}^{\alpha} = \frac{-dE_{tot}}{d\vec{R}_{\alpha}} = F_{HF}^{\alpha} + F_{core}^{\alpha} + F_{val}^{\alpha}$$

Force on atom α:

- Hellmann-Feynman-force $F_{HF}^{\alpha} = Z_{\alpha} \sum_{m=-1}^{1} \lim_{r_{\alpha} \to 0} \frac{V_{1m}^{es}(r_{\alpha})}{r_{\alpha}} \nabla_{\alpha} [r_{\alpha} Y_{1m}(\hat{r})]$ • Pulay corrections
 - Core
 - Valence

$$F_{core}^{\alpha} = -\int \rho_{core}(r) \nabla_{\alpha} V_{eff}(r) \, d\vec{r}$$

$$F_{val}^{\alpha} = \int_{\alpha} V_{eff}(r) \nabla_{\alpha} \rho_{val}(r) \, d\vec{r} + \sum_{k,i} n_i \sum_{K,K'} c_i^*(K') c_i(K) \times \left[(K^2 - \varepsilon_i) \oint \phi_{K'}^*(r) \phi_K(r) \, dS_{\alpha} - i(K - K') \left\langle \phi_{K'} \right| H - \varepsilon_i \left| \phi_K \right\rangle_{\alpha} \right]$$

Forces only for "free" structural parameters:

- NaCl: (0,0,0), (0.5,0.5,0.5) : all positions fixed by symmetry
- TiO₂: Ti (0,0,0), O (u,u,0): one free parameter (u,x,y,z)
- Forces are only calculated when using "-fc":
 - run_lapw –fc 1.0 (mRy/bohr)
 - grep :fgl002 case.scf

200.	partial	
-130.	partial	
140.	partial	
135	partial	
120	partial	
122	partial	
121	partial	

-12.3 **total**

forces converging

→ changes "TOT" to "FOR" in case.in2

 $F_{HF} + F_{core} + F_{val}$, only this last number is correct

Forces are useful for

- structural optimization (of internal atomic positions)
- phonons

Calculations of Phonons: The Direct Method

WIEN2k + Phonon WIEN2k + Phonopy WIEN2k + Phon

Copyright by K.Parlinski

Phonopy:https://phonopy.github.io/phonopy/ by A.Togo. Most used phonon code, free.Phonon:https://www.homepages.ucl.ac.uk/~ucfbdxa/phon/ by A.Togo. Most used phonon code, free.Phon:http://www.homepages.ucl.ac.uk/~ucfbdxa/phon/ by D.Alfe. free

See http://www.wien2k.at/unsupported)

THEORY OF DIRECT METHOD

System energy E (at T = 0) as a function of atomic positions $\mathbf{R}(\mathbf{n}, \mu)$ is

$$E(\mathbf{R}(\mathbf{n},\mu),..\mathbf{R}(\mathbf{m},\nu),...) = E_o + \frac{1}{2}\sum_{\mathbf{n},\mu,\mathbf{m},\nu} \Phi(\mathbf{n},\mu,\mathbf{m},\nu)\mathbf{U}(\mathbf{n},\mu)\mathbf{U}(\mathbf{m},\nu)$$

where the *force constant matrix* are

$$\Phi_{i,j}(\mathbf{n},\mu,\mathbf{m},\nu) = \frac{\partial^2 E}{\partial \mathbf{R}_i(\mathbf{n},\mu)\partial \mathbf{R}_j(\mathbf{m},\nu)} \Big]_o$$

is defined at $\frac{\partial E}{\partial \mathbf{R}_i(\mathbf{n},\mu)} \mid_o = 0.$

The dynamical matrix is defined as

$$\mathbf{D}(\mathbf{k};\mu,\nu) = \frac{1}{\sqrt{M_{\mu}M_{\nu}}} \sum_{\mathbf{m}} \Phi(0,\mu;\mathbf{m},\nu) \exp\{-2\pi i \mathbf{k} \cdot [\mathbf{R}(0,\mu) - \mathbf{R}(\mathbf{m},\nu)]\}$$

 \mathbf{m} runs over *all* atoms. Diagonalization of the dynamical matrix

$$\omega^2(\mathbf{k},j)\mathbf{e}(\mathbf{k},j) = \mathbf{D}(\mathbf{k})\mathbf{e}(\mathbf{k},j)$$

gives phonon frequencies $\omega^2(\mathbf{k}, j)$ and polarization vectors $\mathbf{e}(\mathbf{k}, j)$.

Any atomic displacement $\mathbf{U}(\mathbf{m}, \nu)$ generates forces

$$\mathbf{F}(\mathbf{n},\mu) = -\partial E / \partial \mathbf{R}(\mathbf{n},\mu)$$

on all other atoms. Hence

$$F_i(\mathbf{n},\mu) = -\sum_{\mathbf{m},\nu,j} \Phi_{i,j}(\mathbf{n},\mu,\mathbf{m},\nu) U_j(\mathbf{m},\nu)$$

Master equation of direct method.

$$TU_{W I E N}$$

$$V = \frac{1}{2}kx^{2}$$

n,m: cells μ,ν: atoms

CUMMULANT FORCE CONSTANTS

Displace an atom by $\mathbf{U}(\mathbf{m}, \nu)$

$$F_i(\mathbf{n},\mu) = -\sum_{\mathbf{L}} \Phi_{i,j}(\mathbf{n},\mu,\mathbf{m}+\mathbf{L}), \nu) U_j(\mathbf{m},\nu)$$

 $\mathbf{L} = (L_a, L_b, L_c)$ are the indices of supercell lattice constants. or

$$F_i(\mathbf{n},\mu) = -\Phi_{i,j}^{(\Sigma)}(\mathbf{n},\mu,\mathbf{m},
u)U_j(\mathbf{m},
u)$$

where the **cummulant force constant** is

$$\Phi_{i,j}^{(\Sigma)}(\mathbf{n},\mu,\mathbf{m},\nu) = \sum_{\mathbf{L}} \Phi_{i,j}(\mathbf{n},\mu,\mathbf{m}+\mathbf{L},\nu)$$

L runs over all supercell images.

Conventional dynamical matrix:

$$\mathbf{D}(\mathbf{k};\mu,\nu) = \frac{1}{\sqrt{M_{\mu}M_{\nu}}} \sum_{\mathbf{m}} \Phi(0,\mu;\mathbf{m},\nu) \exp\{-2\pi i \mathbf{k} \cdot [\mathbf{R}(0,\mu) - \mathbf{R}(\mathbf{m},\nu)]\}$$

Supercell dynamical matrix:

$$\mathbf{D}^{(SC)}(\mathbf{k};\boldsymbol{\mu},\boldsymbol{\nu}) = \frac{1}{\sqrt{M_{\boldsymbol{\mu}}M_{\boldsymbol{\nu}}}} \sum_{\mathbf{m}\in SC} \Phi^{(SC)}(0,\boldsymbol{\mu};\mathbf{m},\boldsymbol{\nu}) \exp\{-2\pi i \mathbf{k} \cdot [\mathbf{R}(0,\boldsymbol{\mu}) - \mathbf{R}(\mathbf{m},\boldsymbol{\nu})]\}$$

These two matrices are equal if

$$\mathbf{D}^{(SC)}(\mathbf{k};\boldsymbol{\mu},\boldsymbol{\nu}) = \mathbf{D}(\mathbf{k};\boldsymbol{\mu},\boldsymbol{\nu})$$

- interaction range is confined to interior of supercell (supercell is big enough)
- wave vector is **commensurate with the supercell** and fulfils the condition (independent of interaction range):

$$exp\{-2\pi i\mathbf{k}_s\cdot\mathbf{L}\}=1$$

At wave vectors \mathbf{k}_{s} the phonon frequencies are "exact", provided the supercell contains the complete list of neighbors.

Wave vectors \mathbf{k}_{s} are commensurate with the supercell size.

Exact wave vectors

۲

Total + Oxygen

Internal energy:

$$E = \frac{1}{2} r \int_0^\infty \, d\omega \, g(\omega) \, (\hbar\omega) \, \coth\left(\frac{\hbar\omega}{2k_BT}\right)$$

Free energy:

$$F = rk_BT \int_0^\infty d\omega \, g(\omega) \ln\left[2\sinh\left(\frac{\hbar\omega}{2k_BT}\right)\right]$$

Entropy:
$$S = rk_B \int_0^\infty d\omega g(\omega) \left\{ \left(\frac{\hbar\omega}{2k_B T} \right) \left[\coth\left(\frac{\hbar\omega}{2k_B T} \right) - 1 \right] - \ln\left[1 - \exp\left(-\frac{\hbar\omega}{k_B T} \right) \right] \right\}$$

Heat capacity
$$C_{v}$$
:
$$C = rk_{B} \int_{0}^{\infty} d\omega g(\omega) \left(\frac{\hbar\omega}{k_{B}T}\right)^{2} \frac{exp(\frac{\hbar\omega}{k_{B}T})}{\left[exp\left(\frac{\hbar\omega}{k_{B}T}\right) - 1\right]^{2}}$$

Thermal displacements:

$$\begin{split} B_{ij}(\mu) = & < U_i(\mu) U_j(\mu) > \\ B_{il}(\mu) = & \frac{\hbar r}{2M_{\mu}} \int_0^{\infty} d\omega \, g_{il,\mu}(\omega) \, \frac{1}{\omega} coth\left(\frac{\hbar \omega}{2k_B T}\right) \end{split}$$

PHONON-I

PHONON

- by K.Parlinski (Crakow)
- Linux or MS-windows
- uses a "direct" method to calculate Forceconstants with the help of an ab initio program
- with these Forceconstants phonons at arbitrary k-points can be obtained
- Define your spacegroupDefine all atoms

https://computingformaterials.com

Phonons:

 selects symmetry adapted atomic displacements (4 displacements in cubic perovskites)

(Displacement pattern for cubic perovskite)

- select a supercell: (eg. 2x2x2 atom P-type cell)
- calculate all forces for these displacements with high accuracy(WIEN2k)
- → force constants between all atoms in the supercell
- → dynamical matrix for arbitrary q-vectors
- → phonon-dispersion ("bandstructure") using PHONON (K.Parlinski)

PHONON-II

- Define an interaction range (supercell)
 - create displacement file
 - transfer case.d45 to Unix
- Calculate forces for all required displacements
 - init_phonon_lapw
 - for each displacement a case_XX.struct file is generated in an extra directory
 - runs nn and lets you define RMT values like:
 - 1.85 1-16

	NON 4.21						
	<u>Create T</u> ools <u>H</u> netry 4 Unit Cell ticles	elp	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
* 0	SuperCell Data						
		A	В	C			
- 4	Fransform. S=CL	2.00000000	0.00000000	0.0000000	1		
2.2	from Crys.Cell C L=	0.0000000	2.0000000	0.0000000			
the second	to SuperCell S.	0.00000000	0.0000000	2.00000000	(A)		
, old 1	Restore symmetry of	erystal space	group:	No	e a		
S 🖓 🔰 1	Displacement for HF :	forces in Angs	troms:	0.03000	State of the state		
	Supercell Position F:	ile: WIEN2k	Displ.	+/-: <mark>No</mark>			
25	OK (enter)	Cancel	R				
\$. Jit	· · · · · · · · · · · · · · · · · · ·			-	4		
2.18	5 - 8 - 7 - 6 . * ² - ** - 5 . 5	***********	1 J	*	6 . J		
14 A A A A	8 9	10 - 3 X			19 19 19 19 19 19 19 19 19 19 19 19 19 1		

 init_lapw: either without symmetry (and then copies this setup to all case_XX) or with symmetry (must run init_lapw for all case_XX) (Do NOT use SGROUP)
 run_phonon: run_lapw -fc 0.1 -i 40 for each case_XX

PHONON-III

analyze_phonon_lapw

- reads the forces of the scf runs
- generates "Hellman-Feynman" file case.dat and a "symmetrized HFfile case.dsy (when you have displacements in both directions)
 - check quality of forces:
 - sum F_x should be small (0)
 - abs(F_x) should be similar for +/displacements
- transfer case.dat (dsy) to Windows
- Import HF files to PHONON
- Calculate force constants
- Calculate phonons, analyze phonons eigenmodes, thermodynamic functions

phonon frequencies (compare with IR, raman, neutrons)

- identify dynamically unstable structures, describe phase transitions, find more stable (low T) phases.
- free energies at T>0; quasiharmonic approximation
- Pyrochlore structure of $Y_2Nb_2O_7$: strong phonon instabilities \rightarrow phase transition

