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Dirac Hamiltonian

H D=c α⃗⋅p⃗+βmc2+V

Quantum mechanical description of electrons, consistent 
with the theory of special relativity.

k= 0 k

 k 0  1=0 1
1 0 , 2=

0 −i
i 0  ,

 3=1 0
0 −1

k=1 0
0 −1

Pauli matrices:

H
D 

and the wave function are 4-dimensional objects
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Dirac Hamiltonian

H D 
1
2
3
4
= 

1
2
3
 4
 large components

small components

spin up

spin down

(
ε−mc2 0 −p̂z −(p̂x−i p̂ y)

0 ε−mc2 −(p̂x+i p̂y) p̂z

−p̂z −(p̂x−i p̂y) ε+mc2 0

−(p̂x+ip̂y) p̂z 0 ε+mc2
)(
ψ1
ψ2
ψ3
ψ4
)=0

slow particle limit 
(p=0):

free particle:

mc2 , 


0
0
0
 mc2 , 

0


0
0
 −mc2 , 

0
0


0
 −mc2 , 

0
0
0



spin up spin down antiparticles, up, down
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Dirac equation in spherical potential

Ψ=( g κ(r )χκσ
−i f κ(r )χκσ)

κ=−s ( j+1/2)
j=l+s /2
s=+1,−1

dg κ
dr

=−
(κ+1)
r

gκ+2Mcf κ

df κ
dr
=
1
c
(V−E ) gκ+

κ−1
r

f κ

Solution for spherical potential

combination of spherical 
harmonics and  spinors 

Radial Dirac equation
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Dirac equation in spherical potential

dgκ
dr
=−
(κ+1)
r

gκ+2Mcf κ

df κ
dr
=
1
c
(V−E)gκ+

κ−1
r

f κ

−
1
2M [ d

2 gκ
dr2

+
2
r

dgκ
dr
−

l (l+1)

r2
gκ]− dV

dr
dgκ
dr

1

4M 2c2
+Vgκ−

κ−1
r

dV
dr

gκ
4M 2c2

=Egκ

substitute f from first eq. into the second eq.

Radial Dirac equation

scalar relativistic approximation spin-orbit coupling

κ dependent term, for a 
constant l, κ depends on the 
sign of s
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Implementation: core electrons

Core states  are calculated with spin-compensated Dirac equation

For spin polarized potential – spin up and spin down radial functions 
are calculated separately, the density is averaged according to the 
occupation number specified in case.inc file 

  9 0.00     
1,-1,2      ( N,KAPPA,OCCUP)
2,-1,2      ( N,KAPPA,OCCUP)
2, 1,2      ( N,KAPPA,OCCUP)
2,-2,4      ( N,KAPPA,OCCUP)
3,-1,2      ( N,KAPPA,OCCUP)
3, 1,2      ( N,KAPPA,OCCUP)
3,-2,4      ( N,KAPPA,OCCUP)
3, 2,4      ( N,KAPPA,OCCUP)
3,-3,6      ( N,KAPPA,OCCUP)

Core levels configuration 
(case.inc for Ru atom)86-437/25/23f

64-325/23/22d

42-213/21/21p

2-11/20s

s=+1s=-1s=+1s=-1s=+1s=-1l

occupationκ=-s(j+½)j=l+s/2

1s1/2

2p1/2

2p3/2
Relations between quantum numbers
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Implementation: valence electrons

Valence electrons inside atomic spheres are treated within 
scalar relativistic approximation  (Koelling and Harmon, J. Phys C 1977) 

if RELA is specified in struct file

radial equations of Koelling and 
Harmon (spherical potential)

dP
dr
−
1
r

P=2McQ

dQ
dr
−
1
r

Q=[l (l+1)2
Mcr2+

(V−ϵ)
c ]P

● no κ dependency of the wave function, (l,m,s) 
are good quantum numbers  

● all relativistic effects are included except SOC 
● small component enters normalization and 

calculation of charge inside spheres
● augmentation with large component only
● SOC can be included in “second variation”

Valence electrons in interstitial region are non-relativistic
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Effects of RELA

● contraction of Au s orbitals 

• 1s contracts due to relativistic mass enhancement
• 2s - 6s contract due to orthogonality to 1s

v ~ Z: Au Z = 79;M = 1.2 m

M=m /√1−(v /c )2M V 2
/r=Z e /r2

centripetal force
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Effects of RELA

orbital expansion of Au d orbitals 

Higher l-quantum number states expand due to better shielding 
of the core charge from contracted s-states (effect is larger for 
higher states).
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Spin orbit-coupling

=
1

2Mc2
1

r2
dV MT r

drH P=−
ℏ

2m
∇
2
V ef⋅

l  

 x=0 1
1 0

Pauli matrices:

 y=0 −i
i 0 

 z=1 0
0 −1

● 2x2 matrix in spin space, due to Pauli spin operators, 
wave function is a 2-component vector (spinor)

H P 12= 
1
2

spin up 
spin down 

−
ℏ

2m
∇
2
V ef 0

0 −
ℏ

2m
∇
2
V ef   lz  lx−il y 

 lxil y  − lz=
Spin structure of the Hamiltonian with SOC
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Spin orbit-coupling

● SOC is active only inside atomic spheres, only spherical potential (V
MT

) is taken 
into account, in the polarized case spin up and down parts are averaged  

● eigenstates are not pure spin states
● off-diagonal term of the spin density matrix do not enter SCF cycle
● SOC is added in a second variation (lapwso):

H 1ψ1=ε1ψ1

∑
i

N

(δ ijε1
j
+ ⟨ψ1

j
|H SO|ψ1

i ⟩ ) ⟨ψ1
i|ψ ⟩=ε ⟨ψ1

j|ψ ⟩

first diagonalization (lapw1)

(H 1+H SO )ψ=εψ
second diagonalization (lapwso)

second diagonalization

sum includes both up/down spin states 

N is much smaller then the basis size in lapw1!!
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SOC splitting of p states

p1/2 ( =1)к=1)  different behavior than non-
relativistic p-state (density is diverging at 
nucleus), thus there is a need for extra 
basis function (p

1/2
 orbital)

Spin Orbit splitting of l-quantum number.

+e -e

orbital 
moment

spin

Ej=3/2 ≠ E
j=1/2

+e -e

band edge at  in ZnOГ in ZnO

j=3/2

j=1/2
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p
1/2

 orbitals

Electronic structure of fcc Th, SOC with 6p
1/2

 local orbital
PRB, 64, 1503102 (2001)

energy vs. basis size DOS with and without p
1/2

p
1/2 

included

p
1/2 

not included p
3/2

states

p
1/2

states
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Au atomic spectra

orbital contraction

orbital contraction

orbital contraction

orbital expansion

SOC splitting



15

SOC in magnetic systems

● SOC couples magnetic moment  to the lattice
– direction of the exchange field matters (input in case.inso)

● symmetry operations acts in real and spin space 
– number of symmetry operations may be reduced 
– no time inversion 
– initso_lapw (must be executed) detects new symmetry setting

BABB2c

-BABmb

-BBAma

AAAA1

[110][001][010][100]

direction of magnetization

sy
m

. o
pe

ra
tio

n
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SOC in Wien2k

x lapw1         (increase E-max for more eigenvectors in second diag.)

x lapwso                 (second diagonalization) 

x lapw2 –so     (SOC ALWAYS needs complex lapw2 version)

– run(sp)_lapw -so script:

case.inso file:

WFFIL
4  1  0                           llmax,ipr,kpot 
-10.0000   1.50000       emin,emax (output energy window)
  0.  0.  1.                      direction of magnetization (lattice vectors)
 1                                  number of atoms for which RLO is added
 2   -0.97      0.005        atom number,e-lo,de (case.in1), repeat NX times
 0 0 0 0 0                      number of atoms for which SO is switched off; list of atoms

p
1/2

 orbitals, use with caution !! 
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Summary: relativistic effects

● core electrons - Dirac equation using spherical part of the total 
potential (dirty trick for spin polarized systems)

● valence electrons - scalar relativistic approximation is used as 
default (RELA switch in case.struct), 

● SOC for valence electrons - lapwso has to be included in SCF 
cycle (run -so/run_sp -so), atomic spheres only 

● limitations: not all programs are compatible with SOC, for 
instance: no forces with SOC (yet)
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magnetism, non-collinear case

● WIEN2k can do only nonmagnetic or collinear 
magnetic structures

Z
ψ↑=(

ψ1
0 ) , ψ↓=(

0
ψ2)

● noncollinear magnetic structures, use WIENNCM

=12 , 1,2≠0
Z
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Pauli Hamiltonian

H P=−
ℏ

2m
∇
2
V efB ⋅ Bef⋅

l  

● 2x2 matrix in spin space, due to Pauli spin operators

● wave function is a 2-component vector (spinor)

H P 12= 
1
2

spin up 
component

spin down 
component

1=0 1
1 0

Pauli matrices:

 2=0 −i
i 0 

 3=1 0
0 −1
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Pauli Hamiltonian

● exchange-correlation potential Vxc and magnetic 
field Bxc are defined within DFT LDA or GGA

H P=−
ℏ

2m
∇
2
V ef B ⋅ Bef⋅

l  

V ef=V extV HV xc Bef=BextBxc

electrostatic 
potential

magnetic field spin-orbit coup. 

Hartee term exchange-correlation 
potential

exchange-correlation 
field
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Exchange and correlation 

● from DFT LDA exchange-correlation energy:

E xc n , m =∫nxc n , m dr3

● definition of Vcx and Bxc:

V xc=
∂E xc n , m 

∂n
B xc=

∂E xc n , m 

∂ m
● LDA expression for Vcx and Bxc:

V xc=xc n , m n
∂xc n , m 

∂n
Bxc=n

∂xc n , m 

∂m
m

local function of n and m

functional derivatives

Bxc and m are parallel
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Non-collinear case

● direction of magnetization vary in space

● spin-orbit coupling is present  

H P=−
ℏ

2m
∇
2
V efB ⋅ Bef⋅

l  


−
ℏ

2m
∇
2
V efB B z B B x−iB y 

B B xiB y  −
ℏ

2m
∇
2
V ef B Bz=

=12 , 1,2≠0
● solutions are not pure spinors
● non-collinear magnetic moments  
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Collinear case

● magnetization in Z direction, Bx and By=0 
● spin-orbit coupling is not present  

H P=−
ℏ

2m
∇
2
V efB ⋅ Bef⋅

l  

−
ℏ

2m
∇
2
V efB Bz 0

0 −
ℏ

2m
∇
2
V efB B z=

 =10  ,  =
0
2 ,  ≠ 

● solutions are pure spinors
● collinear magnetic moments  
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Non-magnetic case

● no magnetization present, Bx, By and Bz=0 

● spin-orbit coupling is not present  

H P=−
ℏ

2m
∇
2
V efB ⋅ Bef⋅

l  

−
ℏ

2m
∇
2
V ef 0

0 −
ℏ

2m
∇
2
V ef=

 =0  ,  =
0
  ,  =

● solutions are pure spinors

● degenerate spin solutions  
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Magnetism and Wien2k

● Wien2k can only handle collinear or non-magnetic cases

run_lapw script:

x lapw0
x lapw1
x lapw2
x lcore
x mixer

runsp_lapw script:

x lapw0
x lapw1 -up
x lapw1 -dn
x lapw2 -up
x lapw2 -dn
x lcore -up
x lcore -dn
x mixernon-magnetic case

magnetic casem=n−n=0

m=n−n≠0



26

Magnetism and Wien2k

● in NCM case both part of the spinor are treated simultaneously

m z=n  −n  ≠0

m x=
1
2
n  n   ≠0

m x=i
1
2
n  −n   ≠0

n=∑
nk 
 nk
 nk

∗

 nk nk 
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Non-collinear calculations

● in the case of non-collinear arrangement of spin moment 
WienNCM (Wien2k clone) has to be used

– code is based on Wien2k (available for Wien2k users)

– structure and usage philosophy similar to Wien2k

– independent source tree, independent installation

● WienNCM properties:

– real and spin symmetry (simplifies SCF, less k-points)

– constrained or unconstrained calculations (optimizes magnetic 
moments)

– SOC is applied in the first variational step, LDA+U

– spin spirals are available
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WienNCM - implementation

● basis set – mixed spinors (Yamagami, PRB (2000); Kurtz PRB (2001)

 G
=ei  Gk ⋅r

interstities:

spheres:
 G

APW
=∑



∑
lm
Alm

Gul
Blm

G u̇l
 Y lm

 G

APW
=Alm

Gul
Blm

G u̇l
C lm

Gu2, l
 Y lm

=10 , 
0
1

● real and spin space parts of symmetry op. are not independent 

m

– symmetry treatment like for SOC always on

– tool for setting up magnetic configuration

– concept of magnetic and non-magnetic atoms 
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WienNCM implementation

● Hamiltonian inside 
spheres:

H=−
ℏ

2m
∇
2
 V H so

H orb
H c

AMA and full NC 
calculation

V FULL=V   V  

V   V  
 V AMA=V   0

0 V  


SOC in first 
diagonalization

diagonal orbital field

constraining field

H so=⋅
l= 

l z
l x−i l y

l xi l y −l z


H orb=∑
m m ' 

∣m 〉V mm'

〈m'∣ 0

0 ∣m 〉V mm'

〈m'∣

H c= B ⋅Bc= 0  B Bcx−iBcy 
B BcxiBcy  0 
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NCM Hamiltonian

● size of the Hamiltonian/overlap matrix is doubled 
comparing to Wien2k

● computational cost increases !!!

Wien2k WienNCM
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WienNCM – spin spirals

● transverse spin wave 

R

=R⋅q

mn
=m cosq⋅Rn

 ,sin q⋅Rn
sin  ,cos

● spin-spiral is defined by a vector q given in reciprocal space and,
● an angle Θ between magnetic moment and rotation axis 
● rotation axis is arbitrary (no SOC), hard-coded as Z 

Translational symmetry is lost !!!
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WienNCM – spin spirals

● generalized Bloch theorem

– generalized translations are symmetry operation of the H

T n={−q⋅Rn∣∣Rn }

T n k r =U −q⋅R  k r
R =e i k⋅r

 k r 

 k r =e
i k⋅r   e

i q⋅r
2 u  r 

e
−i q⋅r
2 u  r 

● efficient way for calculation of spin waves, only one unit cell 
is necessary for even incommensurate wave 

group of Tn is Abelian

T n
† H r T n=U †

−q⋅RnH r RnU −q⋅Rn

1-d representations, 
Bloch Theorem
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Usage

● generate atomic and magnetic structure
1) create atomic structure
2) create magnetic structure 

need to specify only directions of magnetic atoms

use utility programs: ncmsymmetry, polarangles, ...
● run initncm (initialization script)

● xncm ( WienNCM version of x script)

● runncm (WienNCM version of run script)

● find more in manual
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WienNCM – case.inncm file
● case.inncm – magnetic structure file

FULL                          
  0.000  0.000  0.000
  45.00000  54.73561    0
 135.00000 125.26439    0
-135.00000  54.73561    0
 -45.00000 125.26439    0
  45.00000  54.73561    0
  45.00000  54.73561    0
 315.00000 125.26439    0
 315.00000 125.26439    0
 135.00000 125.26439    0
 135.00000 125.26439    0
 225.00000  54.73561    0
 225.00000  54.73561    0
   0.50000

q spiral vector

polar angles of mm

optimization switch

mixing for 
constraining field

U, magnetic 
atoms

O, non-magnetic 
atoms
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how to run it ?

runncm_lapw -p -cc 0.0001 ...
 
xncm lapw0
xncm lapw1
xncm lapw2
xncm lcore
xncm mixer

● similar to WIEN2k (initncm, runncm, xncm ...)
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Magnetic structure of  Mn
3
Sn
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Mn
3
Sn cd.
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γ Fe, spin spiral

Spin density maps for q = 0.6 (0-Γ, 1-X )
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