

- This exercise should be done WITHOUT w2web in a terminal window !
- mkdir BaGa4; cd BaGa4
- makestruct (and type in the following information)
 - BaGa₄: SG 139 (I4/mmm), a,a,c= 4.566 4.566 10.775 Ang
 - Ba (0,0, 0), Ga1(0.5,0, 0.75), Ga2 (0,0, 0.38)
- cp init.struct BaGa4.struct
- init_lapw -b -numk 10000 -fermit 0.004 (batch mode)
- edit .machines (insert 2 lines with 1:psi3X)
- run_lapw -p -fc 1 -cc 0.0001; save_lapw rkm7_10k_4mry
- tail *scf and verify that the forces are "small" (no struct opt. necessary)
- x_nmr_lapw -mode in1 (and view the resulting *in1c_nmr file)
- x_nmr_lapw -p -metal
 - check BaGa4.outputnmr_integ for σ_{iso} of both Ga atoms
 - grep :EFG002 *scf
 - grep :EFG003 *scf
- R.Laskowski et al., J. Phys. Chem. C 2017, 121, 753–760
- * These calc. will take some time, continue next page while run/x_nmr is running

- mkdir spin; cp BaGa4.struct spin/spin.struct; cp .machines spin; cd spin
- instgen_lapw -nm; init_lapw -b -sp -numk 10000 -fermit 0.004
- runsp_c_lapw -p; save non-magnetic
- cp \$WIENROOT/SRC_templates/case.vorbup_100T spin.vorbup (and for dn)
 cp \$WIENROOT/SRC_templates/case.vorbup (and for dn)
 cp \$WIENROOT/SRC_templat
- runsp_lapw -p -orbc -cc 0.000005; save_lapw rkm7_10k_4mry
- grepline :hff002/3 ´rkm*scf´ 3 σ_c =HFF*1000 (for a 100T field)
- compare with experiment: (F.Haarmann et al. Chem. Eur. J. 2011, 17, 7560 7568)
- cp \$WIENROOT/SRC_templates/case.indm spin.indm;
- edit *indm: set atom2+3; I=1-3; 3 5 in last line
- x lapwdm –p –up/dn; cat *scfdmup/dn; $\sigma_{sd} = (tot_{up}-tot_{dn}) *10000$

case	V _{zz} (exp)	V _{zz} (th)	δ _{iso} (exp)	δ _{iso} (th)
Ga1	5.99		3010	
Ga2	1.20		840	

- $\sigma_{iso}(th) = \sigma_{orb} \sigma_c \sigma_{sd}$
- Estimate $\delta_{iso}(th) = (\sigma_{itot}th) \sigma_{ref}(th))$; estimate $\sigma_{ref}(th)$ to obtain "best" agreement with exp. (usually one would either calculate the reference compound or do several Ga compounds)
- In metals the results are very sensitive to k-mesh and smearing and careful convergence are necessary (up to 1 000 000 k-points).