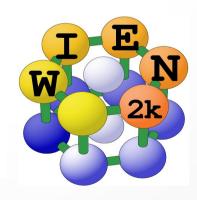
# Spin-orbit coupling in Wien2k

#### Robert Laskowski

rolask@ihpc.a-star.edu.sg

Institute of High Performance Computing Singapore





## **Dirac Hamiltonian**

Quantum mechanical description of electrons, consistent with the theory of special relativity.

$$H_D = c \vec{\alpha} \cdot \vec{p} + \beta m c^2 + V$$

$$\alpha_k = \begin{pmatrix} 0 & \sigma_k \\ \sigma_k & 0 \end{pmatrix} \qquad \beta_k = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix}$$

Pauli matrices:

$$\alpha_{k} = \begin{pmatrix} 0 & \sigma_{k} \\ \sigma_{k} & 0 \end{pmatrix} \qquad \beta_{k} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \qquad \sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

H and the wave function are 4-dimensional objects

## **Dirac Hamiltonian**

spin up
$$\begin{array}{c}
\psi_1 \\
\psi_2 \\
\psi_3 \\
\psi_4
\end{array}
= \epsilon \begin{vmatrix}
\psi_1 \\
\psi_2 \\
\psi_3 \\
\psi_4
\end{array}$$

Iarge components
$$\begin{array}{c}
\psi_1 \\
\psi_2 \\
\psi_3 \\
\psi_4
\end{array}$$

Small components

free particle: 
$$\begin{vmatrix} \epsilon - mc^2 & 0 & -\hat{p}_z & -(\hat{p}_x - i\hat{p}_y) \\ 0 & \epsilon - mc^2 & -(\hat{p}_x + i\hat{p}_y) & \hat{p}_z \\ -\hat{p}_z & -(\hat{p}_x - i\hat{p}_y) & \epsilon + mc^2 & 0 \\ -(\hat{p}_x + i\hat{p}_y) & \hat{p}_z & 0 & \epsilon + mc^2 \end{vmatrix} \begin{vmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{vmatrix} = 0$$

$$mc^2$$
,  $\begin{pmatrix} \psi \\ 0 \\ 0 \\ 0 \end{pmatrix}$   $mc^2$ ,  $\begin{pmatrix} 0 \\ \psi \\ 0 \\ 0 \end{pmatrix}$  spin up spin down

slow particle limit (p=0): 
$$mc^{2}, \begin{pmatrix} \psi \\ 0 \\ 0 \\ 0 \end{pmatrix} mc^{2}, \begin{pmatrix} 0 \\ \psi \\ 0 \\ 0 \end{pmatrix} -mc^{2}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ \psi \end{pmatrix} -mc^{2}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ \psi \end{pmatrix}$$
 spin up spin down antiparticles, up, down

## Dirac equation in spherical potential

### Solution for spherical potential

$$\Psi = \begin{pmatrix} g_{\kappa}(r)\chi_{\kappa\sigma} \\ -if_{\kappa}(r)\chi_{\kappa\sigma} \end{pmatrix} \quad \text{combination of spherical harmonics and spinor}$$

$$\kappa = -s(j+1/2)$$
  
 $j=l+s/2$   
 $s=+1,-1$ 



$$\frac{dg_{\kappa}}{dr} = -\frac{(\kappa+1)}{r} g_{\kappa} + 2 M c f_{\kappa}$$

$$\frac{df_{\kappa}}{dr} = \frac{1}{c} (V - E) g_{\kappa} + \frac{\kappa - 1}{r} f_{\kappa}$$

Radial Dirac equation

## Dirac equation in spherical potential

### Radial Dirac equation

$$\frac{dg_{\kappa}}{dr} = -\frac{(\kappa+1)}{r} g_{\kappa} + 2 M c f_{\kappa}$$

$$\frac{df_{\kappa}}{dr} = \frac{1}{c} (V - E) g_{\kappa} + \frac{\kappa - 1}{r} f_{\kappa}$$

 $\kappa$  dependent term, for a constant l,  $\kappa$  depends on the sign of s

substitute f from first eq. into the second eq.

$$-\frac{1}{2M} \left[ \frac{d^2 g_{\kappa}}{dr^2} + \frac{2}{r} \frac{dg_{\kappa}}{dr} - \frac{l(l+1)}{r^2} g_{\kappa} \right] - \frac{dV}{dr} \frac{dg_{\kappa}}{dr} \frac{1}{4M^2 c^2} + Vg_{\kappa} - \frac{\kappa - 1}{r} \frac{dV}{dr} \frac{g_{\kappa}}{4M^2 c^2} = Eg_{\kappa}$$

scalar relativistic approximation

spin-orbit coupling

## Implementation: core electrons

Core states are calculated with spin-compensated Dirac equation

spin polarized potential - spin up and spin down radial functions are calculated separately, the density is averaged according to the occupation number specified in case.inc file

( N, KAPPA, OCCUP)

3, -3, 6

( N, KAPPA, OCCUP) N, KAPPA, OCCUP) ( N, KAPPA, OCCUP) ( N, KAPPA, OCCUP) ( N, KAPPA, OCCUP)

N, KAPPA, OCCUP)

N, KAPPA, OCCUP)

N, KAPPA, OCCUP)

### Relations between quantum numbers

|   |   | j=l+s/2 |      | $\kappa = -s(j + \frac{1}{2})$ |      | occupation |      |
|---|---|---------|------|--------------------------------|------|------------|------|
|   | I | s=-1    | s=+1 | s=-1                           | s=+1 | s=-1       | s=+1 |
| S | 0 |         | 1/2  |                                | -1   |            | 2    |
| р | 1 | 1/2     | 3/2  | 1                              | -2   | 2          | 4    |
| d | 2 | 3/2     | 5/2  | 2                              | -3   | 4          | 6    |
| f | 3 | 5/2     | 7/2  | 3                              | -4   | 6          | 8    |

Core levels configuration (case.inc for Ru atom)

# Implementation: valence electrons

Valence electrons inside atomic spheres are treated within scalar relativistic approximation (Koelling and Harmon, J. Phys C 1977) if RELA is specified in struct file

$$\frac{dP}{dr} - \frac{1}{r}P = 2McQ$$

$$\frac{dQ}{dr} - \frac{1}{r}Q = \left[l\frac{(l+1)}{2}Mcr^2 + \frac{(V-\epsilon)}{c}\right]P$$

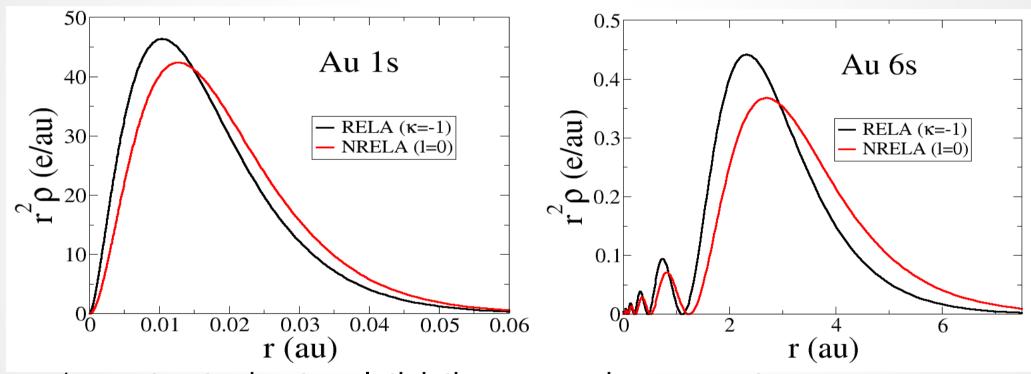
radial equations of Koelling and Harmon (spherical potential)

- no κ dependency of the wave function, (I,m,s) are good quantum numbers
- all relativistic effects are included except SOC
- small component enters normalization and calculation of charge inside spheres
- augmentation with large component only
- SOC can be included in "second variation"

Valence electrons in interstitial region are non-relativistic

## Effects of RELA

contraction of Au s orbitals



- 1s contracts due to relativistic mass enhancement
- 2s 6s contract due to orthogonality to 1s

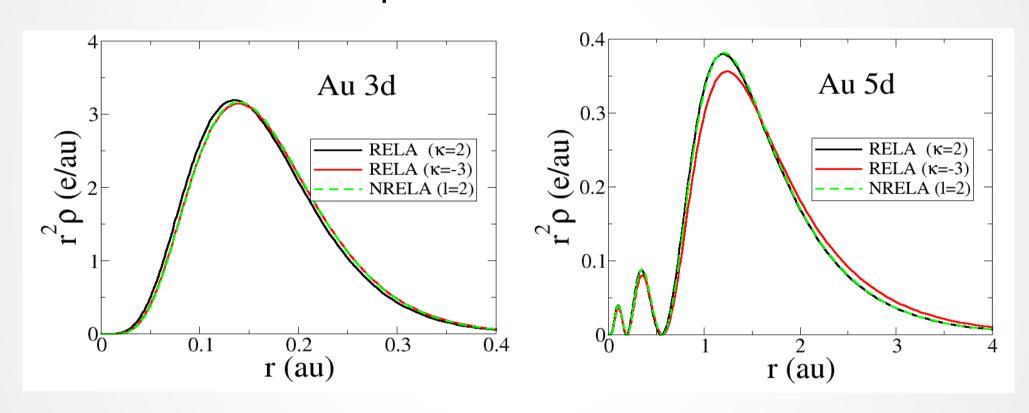
$$MV^2/r = Ze/r^2$$
  
centripetal force

$$M = m/\sqrt{1 - (v/c)^2}$$

$$v \sim Z$$
: Au  $Z = 79$ ;  $M = 1.2 \text{ m}$ 

### Effects of RELA

### orbital expansion of Au d orbitals



Higher I-quantum number states expand due to better shielding of the core charge from contracted s-states (effect is larger for higher states).

9

## Spin orbit-coupling

$$H_P = -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \zeta (\vec{\sigma} \cdot \vec{l}) \dots \qquad \zeta = \frac{1}{2Mc^2} \frac{1}{r^2} \frac{dV_{MT}(r)}{dr}$$

 2x2 matrix in spin space, due to Pauli spin operators, wave function is a 2-component vector (spinor)

spin up
$$H_P = \varepsilon \psi_1$$

$$\psi_2$$
spin down

Pauli matrices:

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\begin{vmatrix}
-\frac{\hbar}{2m}\nabla^2 + V_{ef} & 0 \\
0 & -\frac{\hbar}{2m}\nabla^2 + V_{ef}
\end{vmatrix} + \begin{vmatrix}
\zeta l_z + \dots & \zeta (l_x - il_y) \\
\zeta (l_x + il_y) & -\zeta l_z + \dots
\end{vmatrix} \psi = \varepsilon \psi$$

## Spin-orbit coupling

- SOC is active only inside atomic spheres, only spherical potential  $(V_{MT})$  is taken into account, in the polarized case spin up and down parts are averaged
- eigenstates are not pure spin states, SOC mixes up and down spin states
- off-diagonal term of the spin density matrix is ignored, it means that in each SCF cycle the magnetization is projected on the chosen direction (from case.inso)
- SOC is added in a second variation (lapwso):

$$H_1 \psi_1 = \varepsilon_1 \psi_1$$

second diagonalization (lapwso)

$$(H_1 + H_{SO}) \psi = \varepsilon \psi$$

second diagonalization

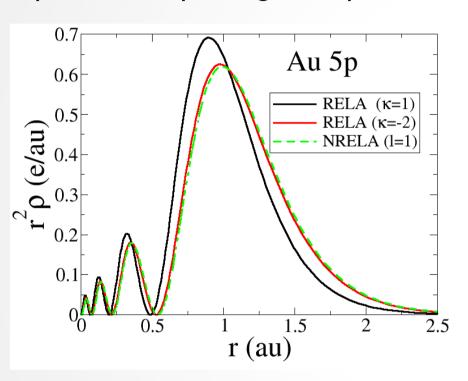
$$\sum_{i}^{N} \left( \delta_{ij} \varepsilon_{1}^{j} + \left\langle \psi_{1}^{j} \middle| H_{SO} \middle| \psi_{1}^{i} \right\rangle \right) \left\langle \psi_{1}^{i} \middle| \psi \right\rangle = \varepsilon \left\langle \psi_{1}^{j} \middle| \psi \right\rangle$$

sum includes both up/down spin states

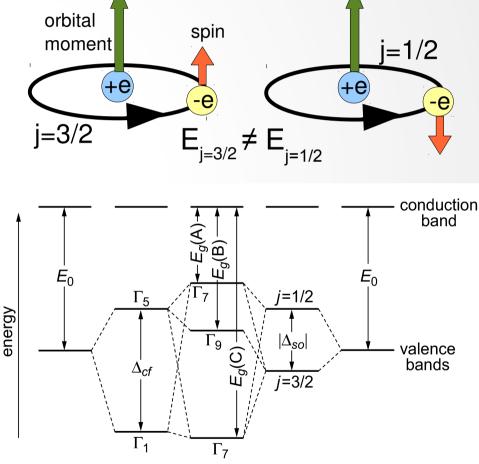
N is much smaller then the basis size in lapw1!!

## **SOC** splitting of p states

Spin Orbit splitting of I-quantum number.



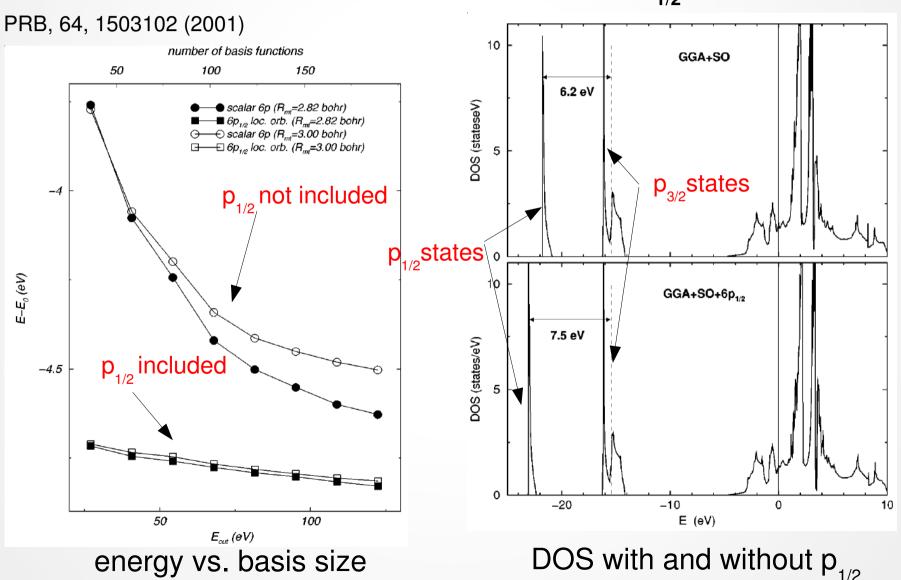
 $p_{1/2}$  different behavior than nonrelativistic p-state (density is diverging at nucleus), need for extra basis function ( $p_{1/2}$  LO)



band edge at ?in ZnO

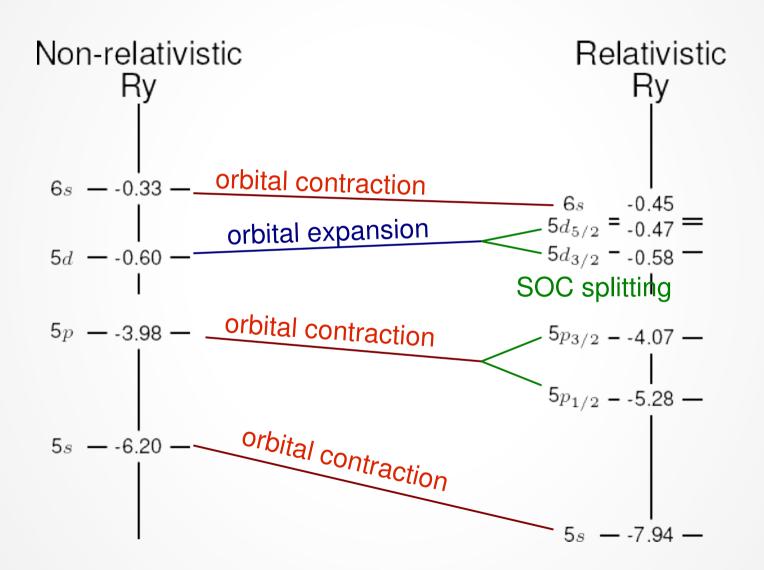
# p<sub>1/2</sub> orbitals

### Electronic structure of fcc Th, SOC with 6p<sub>1/2</sub> local orbital



13

## Au atomic spectra



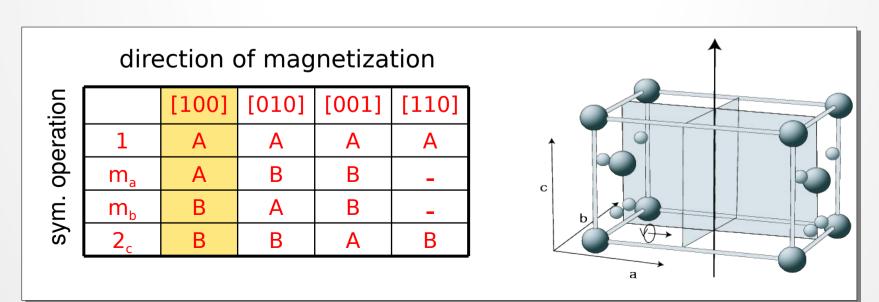
## **SOC** in magnetic systems

### SOC couples magnetic moment to the lattice

direction of the exchange field matters (input in case.inso)

### symmetry operations acts in real and spin space

- number of symmetry operations may be reduced (reflections act differently on spins than on positions)
- no time inversion (do not add an inversion for k-list)
- initso\_lapw (must be executed) detects new symmetry setting



## **SOC** in Wien2k

```
- run(sp)_lapw -so script:
```

```
    x lapw1 (increase E-max for more eigenvectors in second diag.)
    x lapwso (second diagonalization)
    x lapw2 -so (SOC ALWAYS needs complex lapw2 version)
```

#### case.inso file:

```
WFFIL
4 1 0
-10.0000 1.50000
0. 0. 1.
1
2 -0.97 0.005
0 0 0 0 0
```

Ilmax,ipr,kpot
emin,emax (output energy window)
direction of magnetization (lattice vectors)
number of atoms for which RLO is added
atom number,e-lo,de (case.in1), repeat NX times
number of atoms for which SO is switched off; list of atoms

p<sub>1/2</sub> orbitals, use with caution!!

## **Summary**

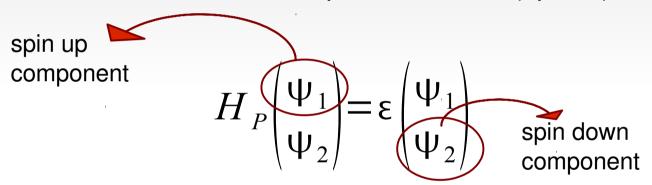
- relativistic effect are included inside spheres only
- for core electrons we solve Dirac equation using spherical part of the total potential (dirty trick for spin polarized systems)
- for valence electrons, scalar relativistic approximation is used as default (RELA switch in case.struct),
- in order to include SOC for valence electrons lapwso has to be included in SCF cycle (run -so/run\_sp -so)
- limitations: not all programs are compatible with SOC, for instance: no forces with SOC (yet)

# NCM

## **Pauli Hamiltonian**

$$H_P = -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \mu_B \vec{\sigma} \cdot \vec{B}_{ef} + \zeta (\vec{\sigma} \cdot \vec{l}) \dots$$

- 2x2 matrix in spin space, due to Pauli spin operators
- wave function is a 2-component vector (spinor)



Pauli matrices:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$V_{ef} = V_{ext} + V_H + V_{xc}$$
  $B_{ef} = B_{ext} + B_{xc}$  Hartee term exchange-correlation potential exchange-correlation field

# **Exchange and correlation**

from DFT LDA exchange-correlation energy:

$$E_{xc}(n, \vec{m}) = \int n \epsilon_{xc}(n, \vec{m}) dr^3$$
 local function of n and m

definition of V<sub>cx</sub> and B<sub>xc</sub>:

$$V_{xc} = \frac{\partial E_{xc}(n, \vec{m})}{\partial n} \qquad \vec{B}_{xc} = \frac{\partial E_{xc}(n, \vec{m})}{\partial \vec{m}} \qquad \text{functional derivatives}$$

LDA expression for V<sub>cx</sub> and B<sub>xc</sub>:

$$V_{xc} = \epsilon_{xc}(n, \vec{m}) + n \frac{\partial \epsilon_{xc}(n, \vec{m})}{\partial n}$$

$$\vec{B}_{xc} = n \frac{\partial \epsilon_{xc}(n, \vec{m})}{\partial m} \hat{m}$$

$$\vec{B}_{xc} \text{ and m are parallel}$$

# Non-magnetic case

$$H_{P} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \mu_{B} \vec{o} \cdot \vec{B}_{ef} + \zeta (\vec{o} \cdot \vec{l}) \dots$$

no magnetization present,  $B_x$ ,  $B_v$  and  $B_z$ =0, and spin-orbit coupling is not present

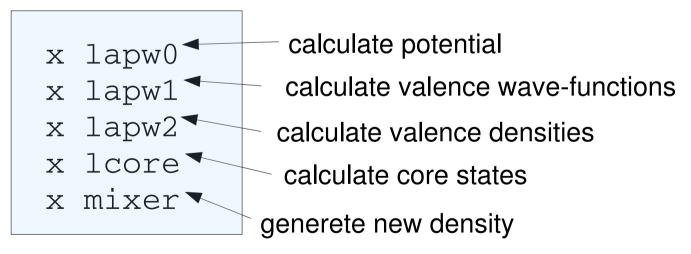
$$\begin{vmatrix} -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \dots & 0 \\ 0 & -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \dots \end{vmatrix} \psi = \varepsilon \psi$$

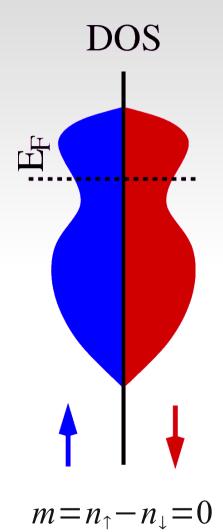
$$\psi_{\uparrow} = \begin{pmatrix} \psi \\ 0 \end{pmatrix}, \ \psi_{\downarrow} = \begin{pmatrix} 0 \\ \psi \end{pmatrix}, \ \ \epsilon_{\uparrow} = \epsilon_{\downarrow} \\ \bullet \ \ \text{degenerate spin solutions}$$

# Non-magnetic calculation

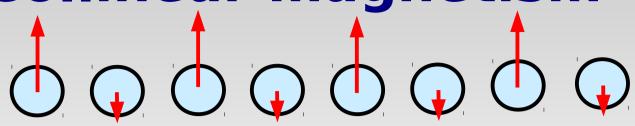
- spin up and spin down part of the electronic spectrum is the same
- formally only one spin channel needs to be solved

### run\_lapw script:





# **Collinear magnetism**



magnetization in z direction, B<sub>x</sub> and B<sub>y</sub>=0 and spin-orbit coupling is not present

$$H_P = -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \mu_B \vec{\sigma} \cdot \vec{B}_{ef} + \zeta (\vec{\sigma} \cdot \vec{l}) \dots$$

$$\begin{vmatrix}
-\frac{\hbar}{2m}\nabla^2 + V_{ef} + \mu_B B_z + \dots & 0 \\
0 & -\frac{\hbar}{2m}\nabla^2 + V_{ef} - \mu_B B_z + \dots
\end{vmatrix} \psi = \varepsilon \psi$$

$$\psi_{\uparrow} = \begin{pmatrix} \psi_1 \\ 0 \end{pmatrix}$$
,  $\psi_{\downarrow} = \begin{pmatrix} 0 \\ \psi_2 \end{pmatrix}$ ,  $\epsilon_{\uparrow} \neq \epsilon_{\downarrow}$  solutions are pure spinors

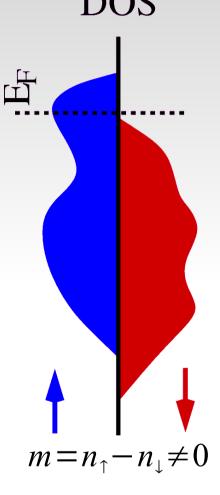
## Collinear magnetic calculation

- due to the exchange field the potential is different for up and down spin channels
- Pauli Hamiltonian is diagonal in spin space, thus up and down spin channels are solved separately

$$\left(-\frac{\hbar}{2m}\nabla^{2}+V_{ef}+\mu_{B}B_{z}+\ldots\right)\psi_{\uparrow}=\varepsilon_{\uparrow}\psi_{\uparrow}$$

$$\left(-\frac{\hbar}{2m}\nabla^{2}+V_{ef}-\mu_{B}B_{z}+\ldots\right)\psi_{\downarrow}=\varepsilon_{\downarrow}\psi_{\downarrow}$$

runsp\_lapw script:



$$\psi_{\uparrow} \Rightarrow \begin{pmatrix} \psi_{\uparrow} \\ 0 \end{pmatrix}, \ \psi_{\downarrow} \Rightarrow \begin{pmatrix} 0 \\ \psi_{\downarrow} \end{pmatrix}, \ \epsilon_{\uparrow} \neq \epsilon_{\downarrow}$$

## anti-ferromagnetic systems

• Cr has AFM bcc structure Cr<sub>1</sub> Cr<sub>2</sub>

spin-up spin-up spin-down spin-down

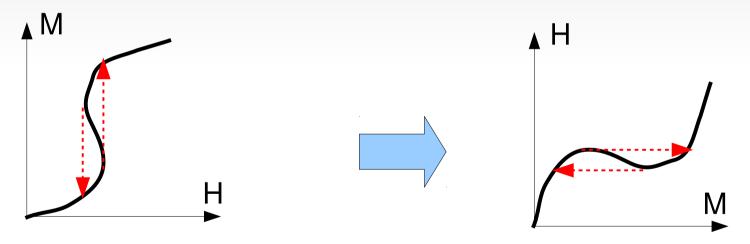
- there is a symmetry relation between spin up and spin down densities (one atoms spin up is another atoms spin down)
- therefore it is enough to do the spin-up calculation, the spin-down results can be generated afterwards
- use <u>runafm\_lapw</u> script in such cases (stabilizes and speeds up the SCF convergence)

## fix spin moment calculations

 constrain value of magnetic moments and dependence of energy on magnetic moment

A.R.Williams, V.L.Moruzzi, J.Kübler, K.Schwarz, Bull.Am.Phys.Soc. **29**, 278 (1984) K.Schwarz, P.Mohn J.Phys.F **14**, L129 (1984)

P.H.Dederichs, S.Blügel, R.Zoller, H.Akai, Phys. Rev, Lett. **53**,2512 (1984)



 under certain conditions magnetization can be multivalued function of H

 interchanging the dependent and independent variable makes this function is single valued (unique)

## Fixed spin moment (FSM) method

Conventional scheme

$$E_F^{\uparrow} = E_F^{\downarrow}$$

$$Z_v = N^{\uparrow} + N^{\downarrow}$$

output 
$$M = N^{\uparrow} - N^{\downarrow}$$

constrained (FSM) method

$$M = N^{\uparrow} - N^{\downarrow} \quad \text{input}$$

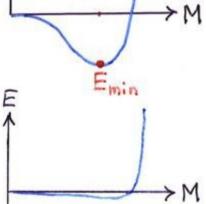
$$Z_{\nu} = N^{\uparrow} + N^{\downarrow}$$

$$E_{F}^{\uparrow} \neq E_{F}^{\downarrow} \quad \text{output}$$

Simple case: bcc Fe

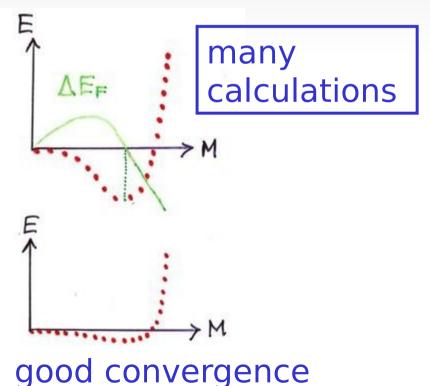
difficult case:

Fe<sub>3</sub>Ni

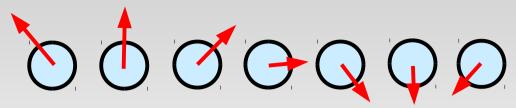


one SCF

poor convergence



# Non-collinear magnetism



 direction of magnetization vary in space and/or spin-orbit coupling is present

$$H_P = -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \mu_B \vec{\sigma} \cdot \vec{B}_{ef} + \zeta (\vec{\sigma} \cdot \vec{l}) \dots$$

$$\begin{vmatrix}
-\frac{\hbar}{2m}\nabla^2 + V_{ef} + \mu_B B_z + \dots & \mu_B (B_x - iB_y) \\
\mu_B (B_x + iB_y) & -\frac{\hbar}{2m}\nabla^2 + V_{ef} + \mu_B B_z + \dots
\end{vmatrix} \psi = \varepsilon \psi$$

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$
,  $\psi_1, \psi_2 \neq 0$  • solutions are non-pure spinors

## Non-collinear magnetism

Wien2k can only handle collinear or non-magnetic cases

in NCM case both spin channels have to be considered

simultaneously

runncm\_lapw script:

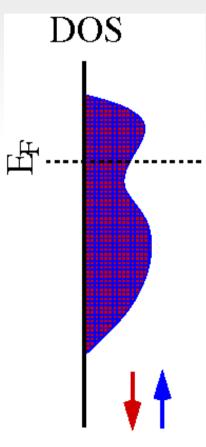
$$\hat{n} = \sum_{nk} \begin{pmatrix} \psi_{\uparrow nk} \\ \psi_{\downarrow nk} \end{pmatrix}^* \left( \psi_{\uparrow nk} \psi_{\downarrow nk} \right)$$

$$m_z = n_{\uparrow \uparrow} - n_{\downarrow \downarrow} \neq 0$$

$$m_x = \frac{1}{2} \left( n_{\uparrow \downarrow} + n_{\downarrow \uparrow} \right) \neq 0$$

$$m_x = i \frac{1}{2} \left( n_{\uparrow \downarrow} - n_{\downarrow \uparrow} \right) \neq 0$$

relation between spin density matrix and magnetization



## Non-collinear calculations

- in the case of non-collinear arrangement of spin moment WienNCM (Wien2k clone) has to be used
  - code is based on Wien2k (available for Wien2k users)
  - structure and usage similar to Wien2k
  - independent source tree, independent installation

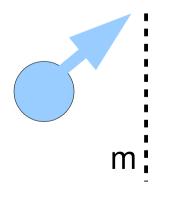
### WienNCM properties:

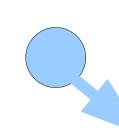
- real and spin symmetry (simplifies SCF, less k-points)
- constrained or unconstrained calculations (optimizes magnetic moments)
- SOC is applied in the first variational step, LDA+U
- spin spirals are available

# **WienNCM - implementation**

basis set – mixed spinors (Yamagami, PRB (2000); Kurtz PRB (2001)

real and spin space parts of symmetry op. are not independent





- symmetry treatment like for SOC
- tool for setting up magnetic configuration
- concept of magnetic and non-magnetic atoms

# WienNCM implementation

Hamiltonian inside spheres:

$$\hat{H} = -\frac{\hbar}{2m} \nabla^2 + \hat{V} + \hat{H}_{so} + \hat{H}_{orb} + \hat{H}_c$$

AMA and full NC calculation

$$\hat{V}_{FULL} = \begin{pmatrix} V_{\uparrow\uparrow} & V_{\downarrow\uparrow} \\ V_{\uparrow\downarrow} & V_{\downarrow\downarrow} \end{pmatrix} \qquad \hat{V}_{AMA} = \begin{pmatrix} V_{\uparrow\uparrow} & 0 \\ 0 & V_{\downarrow\downarrow} \end{pmatrix}$$

$$\hat{V}_{AMA} = \begin{pmatrix} V_{\uparrow\uparrow} & 0 \\ 0 & V_{\downarrow\downarrow} \end{pmatrix}$$

SOC in first diagonalization

$$\hat{H}_{so} = \xi \vec{\sigma} \cdot \vec{l} = \xi \begin{bmatrix} \hat{l}_z & \hat{l}_x - i \hat{l}_y \\ \hat{l}_x + i \hat{l}_y & -\hat{l}_z \end{bmatrix}$$

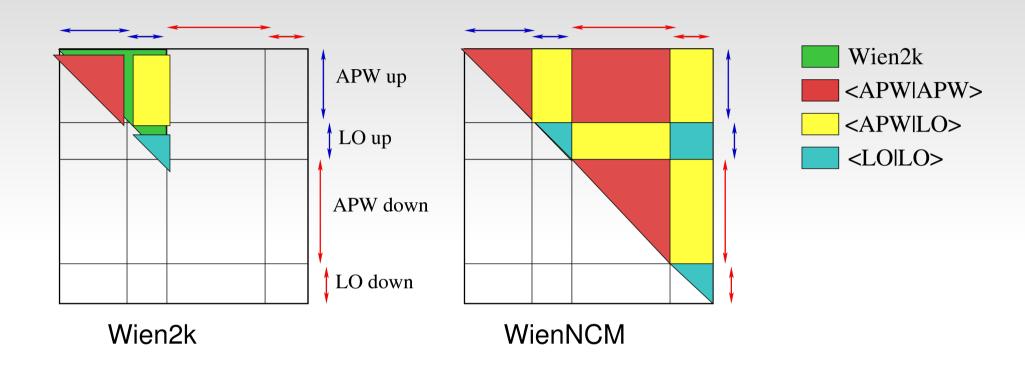
diagonal orbital field

$$\hat{H}_{orb} = \sum_{mm'} \begin{pmatrix} |m\rangle V_{mm'}^{\uparrow} \langle m'| & 0 \\ 0 & |m\rangle V_{mm'}^{\downarrow} \langle m'| \end{pmatrix}$$

constraining field

$$\hat{H}_c = \mu_B \vec{\sigma} \cdot \vec{B}_c = \begin{pmatrix} 0 & \mu_B (B_{cx} - iB_{cy}) \\ \mu_B (B_{cx} + iB_{cy}) & 0 \end{pmatrix}$$

## **NCM (SOC) Hamiltonian**

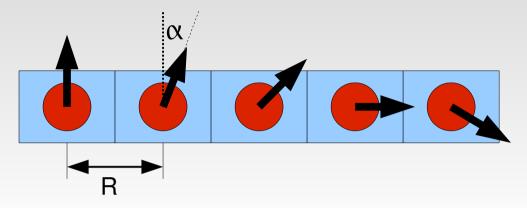


- size of the Hamiltonian/overlap matrix is doubled comparing to Wien2k
- computational cost increases !!!

## WienNCM - spin spirals

transverse spin wave

$$\alpha = \vec{R} \cdot \vec{q}$$



$$\vec{m}^n = m \left( \cos(\vec{q} \cdot \vec{R}^n), \sin(\vec{q} \cdot \vec{R}^n) \sin(\theta), \cos(\theta) \right)$$

- spin-spiral is defined by a vector **q** given in reciprocal space and,
- an angle **©** between magnetic moment and rotation axis
- rotation axis is arbitrary (no SOC), hard-coded as Z

Translational symmetry is lost !!!

## WienNCM - spin spirals

- generalized Bloch theorem
  - generalized translations are symmetry operation of the H

$$\begin{split} T_{n} &= \left\{ -\vec{q} \cdot \vec{R}_{n} \middle| \epsilon \middle| \vec{R}_{n} \right\} \\ T_{n}^{\dagger} H \left( \vec{r} \right) T_{n} &= U^{\dagger} \left( -\vec{q} \cdot \vec{R}_{n} \right) H \left( \vec{r} + \vec{R}_{n} \right) U \left( -\vec{q} \cdot \vec{R}_{n} \right) \end{split}$$

group of T<sub>n</sub> is Abelian

$$\psi_{\vec{k}}(\vec{r}) = e^{i(\vec{k}\cdot\vec{r})} \begin{pmatrix} e^{\frac{i\vec{q}\cdot\vec{r}}{2}} u^{\uparrow}(\vec{r}) \\ e^{\frac{-i\vec{q}\cdot\vec{r}}{2}} u^{\downarrow}(\vec{r}) \end{pmatrix}$$

$$= e^{i(\vec{k}\cdot\vec{r})} \begin{pmatrix} e^{\frac{i\vec{q}\cdot\vec{r}}{2}} u^{\uparrow}(\vec{r}) \\ e^{\frac{-i\vec{q}\cdot\vec{r}}{2}} u^{\downarrow}(\vec{r}) \end{pmatrix}$$

$$= U(-\vec{q}\cdot\vec{R}) \psi_{\vec{k}}(\vec{r}+\vec{R}) = e^{i\vec{k}\cdot\vec{r}} \psi_{\vec{k}}(\vec{r})$$
1-d representations,
Bloch Theorem

 efficient way for calculation of spin waves, only one unit cell is necessary for even incommensurate wave

## **Usage**

- generate atomic and magnetic structure
  - 1) create atomic structure
  - 2) create magnetic structure

    need to specify only directions of magnetic atoms
    use utility programs: ncmsymmetry, polarangles, ...
- run **initncm** (initialization script)
- xncm (WienNCM version of x script)
- runncm (WienNCM version of run script)
- find more in manual

```
runncm_lapw script:
```

```
xncm lapw0
xncm lapw1
xncm lapw2
xncm lcore
xncm mixer
```

## WienNCM - case.inncm file

case.inncm – magnetic structure file

