

WIEN97: ~500 users WIEN2k: ~2350 users

WIEN2k software package

An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties

> Peter Blaha Karlheinz Schwarz Georg Madsen Dieter Kvasnicka Joachim Luitz

November 2001 Vienna, AUSTRIA Vienna University of Technology

http://www.wien2k.at

- WIEN2k consists of many independent F90 programs, which are linked together via C-shell scripts.
- Each "case" runs in his own directory ./case
- The "master input" is called
- Initialize a calculation:
- Run scf-cycle:

case.struct

init_lapw

- run_lapw (runsp_lapw)
- You can run WIEN2k using any www-browser and the w2web interface, but also at the command line in an xterm.
- Input/output/scf files have endings as the corresponding programs:
 - case.output1...lapw1; case.in2...lapw2; case.scf0...lapw0
- Inputs are generated using STRUCTGEN(w2web) and init_lapw

- Based on www
 - WIEN2k can be managed remotely via w2web
- Important steps:
 - start w2web on all your hosts
 - login to the desired host (ssh)
 - w2web (at first startup you will be asked for username/password, port-number, (master-)hostname. creates ~/.w2web directory)
 - use your browser and connect to the (master) host:portnumber
 - firefox http://fp98.zserv:10000
 - create a new session on the desired host (or select an old one)

Welcome to w2web the fully web-enabled interface to WIEN2k Create new session: Select stored session: show only selection Session_name Create on host-node CI2 master node Favalit http://jupiter:10000 Fccni (http://fp98.zserv:10000) http://homer:10000 FeF2 http://pauli.theochem.tuwien.ac.at:10000 Forsterit http://fp98.zserv.tuwien.ac.at:10000 H atom http://hal.zserv.tuwien.ac.at:10000 Hq1201 http://venus.theochem.tuwien.ac.at:10000 Hg3AsO4CI (http://hal.zserv:10000) HgAsO4CI (http://hal.zserv.tuwien.ac.at:10000) 12 MqCO3 NdNiSnD (http://jupiter:10000) NdNiSn_AF (http://jupiter:10000) NdNiSn (http://jupiter:10000) edit hosts TiC_evapaph TiC_kla (http://pauli:10000) TiN_evapaph Select

Structure generator

- spacegroup selection
- import cif or xyz file
- step by step initialization
 - symmetry detection
 - *automatic input generation*
- SCF calculations
 - Magnetism (spin-polarization)
 - Spin-orbit coupling
 - Forces (automatic geometry optimization)
- Guided Tasks
 - Energy band structure
 - DOS
 - Electron density
 - X-ray spectra
 - **Optics**

Idea and realization

by

/area51/pblaha/lapw/2005-june/TiC

StructGen™

You have to click "Save Structure" for changes to take effect! Save Structure
Title: TiC
Lattice:
Type: F P B CXY CYZ Spacegroups from Bilbao Cryst Server
CXZ R H 1_P1 V Lattice parameters in A
a=4.328000038t b=4.328000038t c=4.328000038t
$q = 90.000000$ $\beta = 90.000000$ $y = 90.000000$
Inequivalent Atoms: 2 Atom 1: Ti Z=22.0 RMT=2.0000 remove atom
Pos 1: x=0.00000000 y=0.00000000 z=0.00000000 remove add position
Atom 2: C Z=6.0 RMT=1.9000 remove ator
Pos 1: x=0.50000000 y=0.50000000 z=0.50000000 remove add position

No. 136

 $P 4_2/m 2_1/n 2/m$

Structure given by:

spacegroup lattice parameter positions of atoms (basis)

Rutile TiO₂:

P4₂/mnm (136) a=8.68, c=5.59 bohr Ti: (0,0,0) O: (0.304,0.304,0)

Origin at centre (mmm)

Number of positions, Wyckoff notation, and point symmetry

k

16

8

8

8

Co-ordinates of equivalent positions

1 $x,y,z; \quad \bar{x},\bar{y},z; \quad \frac{1}{2}+x,\frac{1}{2}-y,\frac{1}{2}+z; \quad \frac{1}{2}-x,\frac{1}{2}+y,\frac{1}{2}+z;$

 $\begin{array}{rcl} m & x, x, z; & \bar{x}, \bar{x}, z; & \frac{1}{2} + x, \frac{1}{2} - x, \frac{1}{2} + z; & \frac{1}{2} - x, \frac{1}{2} + x, \frac{1}{2} + z; \\ & x, x, \bar{z}; & \bar{x}, \bar{x}, \bar{z}; & \frac{1}{2} + x, \frac{1}{2} - x, \frac{1}{2} - z; & \frac{1}{2} - x, \frac{1}{2} + x, \frac{1}{2} - z. \end{array}$

 $y,x,0; \ \bar{y},\bar{x},0; \ \frac{1}{2}+y,\frac{1}{2}-x,\frac{1}{2}; \ \frac{1}{2}-y,\frac{1}{2}+x,\frac{1}{2}$

 $m = x, y, 0; \quad \bar{x}, \bar{y}, 0; \quad \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2}; \quad \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2};$

 $x, y, \overline{z}; \quad \overline{x}, \overline{y}, \overline{z}; \quad \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z; \quad \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z;$

 $y, x, z; \quad \bar{y}, \bar{x}, z; \quad \frac{1}{2} + y, \frac{1}{2} - x, \frac{1}{2} + z; \quad \frac{1}{2} - y, \frac{1}{2} + x, \frac{1}{2} + z;$

 $y, x, \overline{z}; \quad \overline{y}, \overline{x}, \overline{z}; \quad \frac{1}{2} + y, \frac{1}{2} - x, \frac{1}{2} - z; \quad \frac{1}{2} - y, \frac{1}{2} + x, \frac{1}{2} - z.$

Conditions limiting possible reflections

General:

hkl:No conditionshk0:No conditions0kl:k+l=2nhhl:No conditions

Special: as above, plus

no extra conditions

hkl: h+k=2n; l=2n

Specify:

- Number of nonequivalent atoms
- Iattice type (P, F, B, H, CXY, CXZ, CYZ) or spacegroup symbol
 - if existing, you must use a SG-setting with inversion symmetry:
 - Si: ±(1/8,1/8,1/8), not (0,0,0)+(1/4,1/4,1/4)!
- Iattice parameters a,b,c (in Å or bohr)
- name of atoms (Si) and fractional coordinates (position)
 - as numbers (0.123); fractions (1/3); simple expressions (x-1/2,...)
 - in fcc (bcc) specify just one atom, not the others in (1/2,1/2,0; ...)
- "save structure "
 - updates automatically Z, r0, equivalent positions
- set RMT and continue": (specify proper "reduction" of NN-distances)
 - non-overlapping "as large as possible" (saves time), but not larger than 2.5 bohr
 - RMT for sp (d) elements 10-20 % smaller than for d (f) elements
 - largest spheres not more than 50 % larger than smallest sphere
 - Exception: H in C-H or O-H bonds: RMT~0.6 bohr (RKMAX~3-4)
 - Do not change RMT in a *"series"* of calculations, RMT equal for same atoms
- save structure save+cleanup"

Program structure of WIEN2k

init_lapw

- step-by-step or batch initialization
- symmetry detection (F, I, Ccentering, inversion)
- input generation with recommended defaults
- quality (and computing time) depends on k-mesh and R.Kmax (determines #PW)

run_lapw

- scf-cycle
- optional with SO and/or LDA+U
- different convergence criteria (energy, charge, forces)
- save_lapw tic_gga_100k_rk7_vol0
 - cp case.struct and clmsum files,
 - mv case.scf file
 - rm case.broyd* files

RKMAX

 \blacksquare The convergence criterion in APW is the product of $R_{\rm MT}.Kmax$

$$\Psi = \sum_{K_n}^{KMAX} c_{K_n} e^{iK_n t}$$

- <u>http://www.wien2k.at/reg_user/faq/rkmax.html</u>
- medium quality convergence for smallest atom:
- basis set scales with RKmax³
- cputime scales with N_{PW}³
- increasing Rkmax by 10 %
 → doubles cputime
- **Rkmax** Element 3.0 Н 4.5 Li 5.0 Be, B, Si 5.5 C, P N, S 6.0 6.5 O, CI, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Al 7.0 F 7.5 Sc-Cr, Ga-Br, Y-Mo 8.0 Mn-Zn, Ru-Cd, In-I, La, Ce, Hf-Re 8.5 Os-At, Pr-Lu, Ac-Lr

START with SMALL Rkmax (relaxation), increase/test later

• Replace the "integral" of the BZ by a finite summation on a mesh of "k-points" $\rho(r) = \sum_{n}^{E_n < E_F} \int \psi_{k,n}^* \psi_{k,n} d^3k = \sum_{k,n} w_{k,n} \psi_k^* \psi_k$

weights $W_{k,n}$ depend on k and bandindex n (occupation)

• for full "bands" the weight is given by "symmetry"

• $w(\Gamma) = 1$, w(x) = 2, $w(\Delta) = 4$, w(k) = 8

➡ shifted "Monkhorst-Pack" mesh

- for partially filled bands (metals) one must find the Fermi-energy (integration up to NE) and determine the weights for each state E_{k,n}
 - Inear tetrahedron method (TETRA, eval=999)
 - Inear tetrahedron method + "Bloechl" corrections (TETRA)
 - "broadening methods"
 - gauss-broadening (GAUSS 0.005)
 - temperature broadening (TEMP/TEMPS 0.005)
- broadening useful to damp scf oszillations, but dangerous (magnetic moment)

X kgen (generates k-mesh and reduces to irreducible wedge using symmetry)

- automatically "adds inversion"
 - time inversion holds and E(k) = E(-k)
 - except in magnetic spin-orbit calculations (x -so kgen; uses case.ksym file)
 - x -fbz kgen (generates "full mesh" in BZ)
- always "shift" the mesh for scf-cycle
 - gaps often at Γ ! (might not be in your mesh)
- small unit cells and metals require large k-mesh (1000-100000)
- Iarge unit cells and insulators need only 1-10 k-points
- use at first a fairly coarse mesh for scf/relaxations
- continue later with finer mesh
 - mesh was good if nothing changes and scf terminates after few (3) iterations
- use even finer meshes for DOS, spectra, optics,...

All programs are executed via the "master" shell-script "x": x lapw2 –up –c

- This generates a "def" file: lapw2.def
 - 5,'tin.in2c', 'old', 'formatted'
 - 6, 'tin.output2up', 'unknown', 'formatted'
 - 8, 'tin.clmvalup', 'unknown', 'formatted'
 - 10, './tin.vectorup', 'unknown', 'unformatted'
- and executes: lapw2c lapw2.def
- All WIEN2k-shell scripts have long and short names:
 - x_lapw; runsp_lapw, runfsm_lapw → x; runsp; runfsm
- All scripts have a "help" switch "-h", which explains flags and options (without actually execution)

x –h x lapw1 -h

run_lapw [options]	(for nonmagnetic cases)
-ec 0.0001	convergence of total energy (Ry)
■ -cc 0.0001	convergence of charge distance (e-)
■ -fc 1.0	convergence of forces (mRy/bohr)
-it (-it1,-it2, -noHinv)	iterative diagonalization (large speedup)
■ - <i>p</i>	parallel calculation (needs .machines file)
■ <i>-SO</i>	add spin-orbit (only after "init_so")
Spacegroups without inversion used and a spacegroups without inversion used	use automatically lapw1c, lapw2c (case.in1c,in2c)

case.scf: master output file, contains history of the scf-cycle

most information is stored with some "labels" (grep :label case.scf)

• :ENE	:DIS	:FER	:GAP :CTO	001 :NTC	0001	:QTL001
• :FOR00	2: 2.A	ГОМ	19.470	0.000	0.000	19.470
• :FGL00	2: 2.AT	OM	13.767	13.767	0.000	total forces
■ :LAT	:VOL	:POSx	XX			

Getting help

- #_lapw -h "help switch" of all WIEN2k-scripts
- help_lapw:
 - opens usersguide.pdf; Use ^f keyword to search for an item ("index")
- html-version of the UG: (\$WIENROOT/SRC_usersguide/usersguide.html)
- <u>http://www.wien2k.at/reg_user</u>
 - FAQ page with answers to common questions
 - Update information: When you think the program has an error, please check newest version
 - Textbook section: DFT and the family of LAPW methods by S.Cottenier
 - Mailing-list:
 - subscribe to the list (always use the same email)
 - full text search of the "digest" (your questions may have been answered before)
 - posting questions: Provide sufficient information, locate your problem (case.dayfile, *.error, case.scf, case.outputX).
 - "My calculation crashed. Please help." This will most likely not be answered.

- - identify for which eigenvalue, atom and l it happens, check E_F (case.scf2, case.output2)
 - *identify the corresponding linearization energies in case.scf1*
 - change the corresponding linearization energy in case.in1
 - compare and check with :EPL and :EPH lines in case.scf2
 - default E-parameters are adapted automatically but may need changes for
 - surfaces, molecules (negative EF) or heavy elements (EF often larger than 1.0)
 - add a local orbital (or adjust its energy)
 - *if QTL-B occurs for an atom with large RMT, reduce RMT*
 - this may happen for larger RKMAX ("numerical linear dependency")
- scf-cycle diverges (grep :DIS case.scf):
 - check structure (most likely a wrong structure caused divergence);
 - reduce mixing in case.inm slightly; rm *.broyd* case.scf; x dstart
 - check E-parameters (see above), check :NEC01

case.klist, case.in2

GAMMA	0	0	0	40	1.0	IX,	IY,	IZ,	IDIV,	WEIGHT
•	1	0	0	40	6.0					
• • • •										
• X	40	0	0	40	3.0					

case.in2:

 $\rho(r) = \sum_{LM} \rho_{LM}(r) Y_{LM}(\hat{r}) \qquad \rho(r) = \sum_{GMAX} \rho_{G} e^{iGr}$

- Energy bands
 - classification of irreducible representations
 - ´character-plot´ (emphasize a certain band-character)
- Density of states
 - including partial DOS with I and m- character (eg. p_x , p_y , p_z)
- Electron density, potential
 - total-, valence-, difference-, spin-densities, ρ of selected states
 - 1-D, 2D- and 3D-plots (Xcrysden)
 - X-ray structure factors
 - Bader 's atom-in-molecule analysis, critical-points, atomic basins and charges ($\nabla \rho . \vec{n} = 0$)
 - spin+orbital magnetic moments (spin-orbit / LDA+U)
- Hyperfine parameters
 - hyperfine fields (contact + dipolar + orbital contribution)
 - Isomer shift
 - Electric field gradients

Session: TiC

/susi/pblaha/lapw/TiC be sure to have case.vector on Density of states a dense tetrahedral mesh after x lapw2 -qtl Calculate partial charges a scf calculation edit TiC.int Edit input-file for TETRA • eventually: x kgen Calculate partial DOS 🗹 interactively x tetra edit case.in1 (larger Emax) edit TiC.outputt Check output of TETRA x lapw1 dosplot Plot DOS Session: TiC case.outputt /susi/pblaha/lapw/TiC integrated DOS File: /susi/pblaha/lapw/TiC/TiC.int case.dos1ev (3ev) contine with DOS Save Download this file: 🖬 text-file for plotting Header from TiC.qtl: • E-zero at E_F tot,0,1,2,3,xdos(i,j),j=1,i),i=1,lxdos2) ATOM ATOM tot,0,1,2,D-eg,D-t2g,3 2 Title -0.50 0.002 1.500 0.003 EMIN, DE, EMAX, Gauss-broadening(>;de) 3 NUMBER OF DOS-CASES specified below total atom, case=column in qtl-header, label 2 Atom1-s Atom2-eq

partial charges:

Iocal rotation matrix:

- transfers z (y) into highest symmetry
- reduces terms in LM series
- "chemical" interpretation
 - p_x is different from p_y

- see case.struct and case.outputs
- x qtl (instead of x lapw2 -qtl)
 - **f-**orbitals
 - qtls for different coordinate system (eg. "octahedral" in TiO₂)
 - relativistic basis ($p_{1/2}$ - $p_{3/2}$ or $d_{3/2}$ - $d_{5/2}$ splitting in so calculation)
 - for angular dependend TELNES (ISPLIT 88, 99)

- Energy bands
 - classification of irreducible representations
 - ´character-plot´ (emphasize a certain band-character)
- Density of states
 - including partial DOS with I and m- character (eg. p_x , p_y , p_z)
- Electron density, potential
 - total-, valence-, difference-, spin-densities, ρ of selected states
 - 1-D, 2D- and 3D-plots (Xcrysden)
 - X-ray structure factors
 - Bader 's atom-in-molecule analysis, critical-points, atomic basins and charges $(\nabla \rho.\vec{n} = 0)$
 - spin+orbital magnetic moments (spin-orbit / LDA+U)
- Hyperfine parameters
 - hyperfine fields (contact + dipolar + orbital contribution)
 - Isomer shift
 - Electric field gradients
 - NMR chemical shifts

Theory to characterize atoms and chemical bonds from the topology of the electron density, by R.F.Bader (http://www.chemistry.mcmaster.ca/faculty/bader/aim/aim_0.html)

Electron density of C₂H₄

AIM-II

Bonds are characterized by "critical points", where $\nabla \rho = 0$

density maximum: (3,-3); 3 negative curvatures λ, (at nucleus or non-NM)
bond CP: (3,-1): 2 negative, 1 positive λ (saddle point)
positive (and large) Laplacian: ionic bond
negative Laplacian: covalent bond
bridge CP: (3,1)
cage CP: (3,3) (minimum)

(3,-1) BCP

trajectories of constant $~\nabla\rho$ originating at CPs in $\rm C_2H_4$

AIM-III

• "Atoms" are regions within a zero-flux surface $\vec{\nabla} \rho \cdot \vec{n} = 0$

 ρ of C_2H_4 with zero-flux lines defining atomic basins

AIM-IV

example of BN/Ni with "difference" to free atoms,workfunction shift

Bader analysis of some inorganic compounds:

	ρ(e/A³)	Δρ(e/A ⁵)	Q (e)	
Cl ₂	1.12	-6.1	-	Cl _a more covalent
I ₂	0.48	-0.9	-	then I_2
TiC	0.51	1.8	1.7	
TiN	0.47	3.9	1.7	
TiO	0.43	5.8	1.5	more ionic, but less charge
KCI	0.08	1.2	0.6	less ionic then TiC ?

x aim [-c]

You must have a "good" scf-density (case.clmsum)

no core leakage, LMs up to L=8-10 in case.in2

SURF

1 20 0.0 1.570796327 20 0.0 0.785398163 0.07 1.0 4 1.65 0.1 3 3 3 IRHO	atom in center of surface (including MULT) theta, 20 points, from zero to pi/2 phi, from 0 to pi/4 (depends on symmetry!!) step along gradient line, rmin (has reached an atom) initial R for search, step (a.u) nshell "INTEGRATE" rho
WEIT	WEIT (surface weights are available in case.surf)
30	30 radial points outside min(RMIN,RMT)
END	
CRIT 1 ALL 3 3 3 END	atom around you search for critical points two, three, four, all (dimers,trimers,all=2+3) nshell
ovtractain lanuu -	aritical points and (converted units)

extractaim_lapw: \rightarrow critical_points_ang (converted units) :PC x, y, z, λ_1 , λ_2 , λ_3 , ch, laplacian, rho

Total energy and forces

- optimization of internal coordinates, (MD, BROYDEN)
- cell parameter only via E_{tot} (no stress tensor)
- elastic constants for cubic, hexagonal, and tetragonal cells
- Phonons via supercells
 - Interface to PHONON (K.Parlinski) bands, DOS, thermodynamics, neutrons
 - Interface to PHONOPY (A. Togo)
 - http://www.wien2k.at/reg_user/unsupported
- Spectroscopy
 - core level shifts
 - X-ray emission, absorption, electron-energy-loss (with core holes)
 - core-valence/conduction bands including matrix elements and angular dep.
 - optical properties (dielectric function in RPA approximation, JDOS including momentum matrix elements and Kramers-Kronig)
- fermi surface: 2D, 3D (using XcrysDen)

• xcrysden --wien_fermisurface tin.struct

choose a good k-mesh (eg. 10000 points); (DON'T CHANGE to UNIT 5 !!!)

plot the FS for all bands which cross E_F and compare to band structure

- for 2D plots there is also a WIEN2k-tool "fsgen" (see UG)
- SKEAF (<u>www.wien2k.at/reg_users/unsupported</u>): quantum oszillations

Total energy and forces

- optimization of internal coordinates, (MD, BROYDEN)
- cell parameter only via E_{tot} (no stress tensor)
- elastic constants for cubic, hexagonal, and tetragonal cells
- Phonons via supercells
 - Interface to PHONON (K.Parlinski) bands, DOS, thermodynamics, neutrons
 - Interface to PHONOPY (A. Togo)
 - http://www.wien2k.at/reg_user/unsupported
- Spectroscopy
 - core level shifts
 - X-ray emission, absorption, electron-energy-loss (with core holes)
 - core-valence/conduction bands including matrix elements and angular dep.
 - optical properties (dielectric function in RPA approximation, JDOS including momentum matrix elements and Kramers-Kronig)
- fermi surface: 2D, 3D (using XcrysDen)

$$E_{A_x B_y}^{cohes.} = E^{crystal} - x E_A^{atom} - y E_B^{atom}$$

Ecrystal: scalar-relativistic valence (or approx. SO)

Eatom : LSTART: fully-relativistic inconsistent description

➔ for heavier elements (2nd row): supercell with one atom in a ~30 bohr FCC box (identical RMT, RKmax, 1 k-point, spinpolarized)

Lattice parameters, volume, c/a ratio only via total energies:

- x optimize: creates a series of "struct" files + script "optimize.job"
 - select volume or c/a, ...
 - select number of cases and desired changes in volume (in % of V₀)
- edit optimize.job
 - adapt to your need: change / uncomment various lines, eg.:
 - select different convergence parameters, parallelization, more iterations (-i 40)
 - different "save_lapw" (with more specific names)
 - replace "run_lapw" by "runsp_lapw" or min_lapw -I -j "run_lapw -I -fc 1"
- execute optimize.job
- plot (analyse) the results
- combinations of volume and c/a are possible: 2Doptimize
 - "x optimize" always uses case_initial.struct (if present)
 - do a "volume" optimization to create case_vol_xx.struct files
 - copy the respective case_vol_xx.struct file to case_initial.struct
 - x optimize with "c/a" for this particular volume and proceed as above.

Symmetry:

WIEN "preserves" symmetry:

- c/a optimization of "cubic" TiC:
 - change c lattice parameter in TiC.struct (tetragonal distortion, #sym.op=0)
 - init_lapw
 - change c back to cubic
 - x optimize ...
- "Jahn-Teller" distortion:
 - when you start with a perfect octahedra, you will never get any distortion
 - → start with slightly distorted positions

c/a

4x4x4 supercells: P (64), B (32), F (16) atoms

 $\sqrt{2}x\sqrt{2}$ supercells (1 \rightarrow 2 atoms)

Supercells

Program "supercell":

- start with "small" struct file
- specify number of repetitions in x,y,z (only integers, e.g. 2x2x1)
- specify P, B or F lattice
- add "vacuum" for surface slabs (only (001) indexed surfaces)
- shift all atoms in cell
- You must break symmetry!!!
 - replace (impurities, vacancies) or
 - displace (phonons) or
 - Iabel at least 1 atom (core-holes, specific magnetic order; change "Fe" to "Fe1"; this tells the symmetry-programs that Fe1 is NOT a Fe atom!!)
- At present "supercell" works only along unit-cell axes!!!

requires octave (matlab) and xcrysden (visualization)
allows complex operations on struct-files

octave

```
s=loadstruct("GaN.struct")
```

make an orthorhombic supercell and visualize it a=[1 0 0; 1 1 0; 0 0 2] sout=makesupercell (s,a); showstruct(sout);

```
# save it as test.struct
savestruct (sout,"test.struct");
```

get help on all commands helpstruct

Total energies and atomic forces (Yu et al.; Kohler et al.)

Total Energy:

- Electrostatic energy
- *Kinetic energy*
- XC-energy

$$U[\rho] = \frac{1}{2} \int d^{3}\vec{r} \ \rho(\vec{r}) V_{es}(\vec{r}) + \frac{1}{2} \sum_{\alpha} Z_{\alpha} V_{es}^{\alpha}(\vec{r})$$
$$T[\rho] = \sum_{i} n_{i} \varepsilon_{i} - \int d^{3}\vec{r} \ \rho(\vec{r}) V_{eff}(\vec{r})$$
$$E_{xc}[\rho] = \int d^{3}\vec{r} \ \rho(\vec{r}) \varepsilon_{xc}(\vec{r})$$
$$\vec{F}^{\alpha} = \frac{-dE_{tot}}{d\vec{R}_{\alpha}} = F_{HF}^{\alpha} + F_{core}^{\alpha} + F_{val}^{\alpha}$$

• Force on atom α :

- Hellmann-Feynman-force $F_{HF}^{\alpha} = Z_{\alpha} \sum_{m=1}^{1} \lim_{r_{\alpha} \to 0} \frac{V_{1m}^{es}(r_{\alpha})}{r_{\alpha}} \nabla_{\alpha} [r_{\alpha} Y_{1m}(\hat{r})]$ Pulay corrections
 - Core

Valence

$$F_{core}^{\alpha} = -\int \rho_{core}(r) \nabla_{\alpha} V_{eff}(r) \, d\vec{r}$$

• expensive, contains a summation $F_{val}^{\alpha} = \int_{\alpha} V_{eff}(r) \nabla_{\alpha} \rho_{val}(r) d\vec{r} + \sum_{k,i} n_i \sum_{K,K'} c_i^*(K') c_i(K) \times$ of matrix elements over all occupied states $\left[(K^2 - \varepsilon_i) \oint \phi_{K'}^*(r) \phi_K(r) dS_{\alpha} - i(K - K') \langle \phi_{K'} | H - \varepsilon_i | \phi_K \rangle_{\alpha} \right]$

Forces only for "free" structural parameters:

- *NaCl: (0,0,0), (0.5,0.5,0.5) : all positions fixed by symmetry*
- TiO₂: Ti (0,0,0), O (u,u,0): one free parameter (u,x,y,z)
- Forces are only calculated when using "-fc":
 - run_lapw -fc 1.0 (mRy/bohr)
 - grep :fgl002 case.scf
 - 200. partial
 - -130. partial
 - 140. partial

partial

- only F_{HF} + F_{core}
- a 120 partial

135

- a 122 partial
- 121 partial
- -12.3 **total**

Only $F_{HF} + F_{core}$

- forces converging
- \rightarrow changes "TOT" to "FOR" in case.in2
- F_{HF} + F_{core} + F_{val} , only this last number is correct
- Forces are useful for
 - structural optimization (of internal parameters)
 - phonons

Current algorithms

- Calculate SCF mapping, time T₀
- Broyden expansion for fixed-point problem, self-consistent density, N_{SCF} iterations
- BFGS is most common for optimizing the atomic positions (Energy), N_{BFGS}
- Time scales as N_{SCF}*N_{BFGS}*T₀

/home/pblaha/tio2> min_lapw [-p -it -sp] [-j "run -fc 1 -p -it"] [-NI]

- performs scf-cycle for fixed positions
- get forces and move atoms along forces (building an approximate Hessian) and writing a new case.struct file
- extrapolate density (case.clmsum)
- perform next scf cycle and loop until forces are below "tolf"
- CONTROL FILES:
 - .minstop stop after next structure change
- tio2.inM (generated automatically by "pairhess" at first call of min_lapw)
 - PORT 2.0 #(NEW1, NOSE, MOLD, tolf (a4,f5.2))
 - 0.0 1.0 1.0 1.0 # Atom1 (0 will **constrain** a coordinate)
 - 1.0 1.0 1.0 1.0 # Atom2 (NEW1: 1,2,3:delta_i, 4:eta (1=MOLD, damping))
- monitor minimization in file case.scf_mini
 - contains last iteration of each geometry step
 - each step N is saved as case_N.scf (overwritten with next min_lapw !)
 - grep :ENE case.scf_mini
 - grep :FGLxxx case.scf_mini (:POSxxx)

- damped Newton mechanics scheme (NEW1: with variable step)
- quite efficient quasi-Newton (PORT) scheme
 - minimizes E (using forces as gradients and construct approx. Hessian)
 - If minimizations gets stuck or oscillates: (because E and F_i are inconsistent):
 - touch .minstop; min -nohess (or rm case.tmpM .min_hess)
 - improve scf-convergence (-ec), Rkmax, k-mesh, ...
 - change to NEW1 scheme

W impurity in Bi (2x2x2 supercell: Bi₁₅W)

- Treat the **density** and atomic positions *all* at the same time.
- No restrictions to "special" cases, general algorithm has to work for insulators, metals, semiconductors, surfaces, defects, hybrids....
- Few to no user adjustable parameters

10.1021/ct4001685

Solve (ρ(r,x)-F(ρ(r,x)),G)=0
s_k = (ρ,x)_{k+1}-(ρ,x)_k; y_k = (F(ρ,x),G)_{k+1} - (F(ρ,x),G)_k
Broyden's "Good Method"

$$B_{k+1} = B_k + \frac{(y_k - B_k s_k) s_k^T}{s_k^T s_k}$$

$$H_{k+1} = H_{k} + \frac{(s_{k} - H_{k} y_{k})s_{k}^{T}}{s_{k}^{T} y_{k}}$$

Broyden's "Bad Method" $H_{k+1} = H_k + \frac{(s_k - H_k y_k) y_k^T}{y_k^T y_k}$

C.G. Broyden, A Class of Methods for Solving Nonlinear Simultaneous Equations, Mathematics of Computation, 19 (1965) 577-593.

Generalizable to multisecant method (better,

L.D.Marks: J. Chem. Theory Comput, DOI: 10.1021/ct4001685

Larger Problems: 52 atoms, MgO (111) + H_2O 108 atoms AlFe

J. Chem. Theory Comput, DOI: 10.1021/ct4001685 Lyudmila V. Dobysheva (2011)

- edit case.inm and set "MSR1a"
- run_lapw -fc 1.0 -cc 0.001 -ec 0.0001 [-it -noHinv -p]
- This runs ONE big scf-calculations optimizing the density and the positions (forces towards zero) simultaneously (may need hundreds of iterations).
- Monitor: :ENE and :FR (av. and max forces, movements)
- it continues until all :FR quantities are below "tolf" (case.inM) and switches then automatically to MSR1 for a final charge optimization (with fixed positions).
- quite efficient, recommended method, still under development by L.Marks (Northwestern Univ).

Calculations of Phonons: The Direct Method

WIEN2k + Phonon

Copyright by K.Parlinski

http://wolf.ifj.edu.pl/phonon/

alternatively use A.Togo`s PHONOPY code +Wien2k-interface (see www.wien2k.at/unsupported)

Conventional dynamical matrix:

$$\mathbf{D}(\mathbf{k};\mu,\nu) = \frac{1}{\sqrt{M_{\mu}M_{\nu}}} \sum_{\mathbf{m}} \Phi(0,\mu;\mathbf{m},\nu) \exp\{-2\pi i \mathbf{k} \cdot [\mathbf{R}(0,\mu) - \mathbf{R}(\mathbf{m},\nu)]\}$$

Supercell dynamical matrix:

$$\mathbf{D}^{(SC)}(\mathbf{k};\boldsymbol{\mu},\boldsymbol{\nu}) = \frac{1}{\sqrt{M_{\boldsymbol{\mu}}M_{\boldsymbol{\nu}}}} \sum_{\mathbf{m}\in SC} \Phi^{(SC)}(0,\boldsymbol{\mu};\mathbf{m},\boldsymbol{\nu}) \exp\{-2\pi i \mathbf{k} \cdot [\mathbf{R}(0,\boldsymbol{\mu}) - \mathbf{R}(\mathbf{m},\boldsymbol{\nu})]\}$$

These two matrices are equal if

$$\mathbf{D}^{(SC)}(\mathbf{k};\boldsymbol{\mu},\boldsymbol{\nu}) = \mathbf{D}(\mathbf{k};\boldsymbol{\mu},\boldsymbol{\nu})$$

- interaction range is confined to interior of supercell (supercell is big enough)
- wave vector is **commensurate with the supercell** and fulfils the condition (independent of interaction range):

 $exp\{-2\pi i\mathbf{k}_s\cdot\mathbf{L}\}=1$

At wave vectors \mathbf{k}_{s} the phonon frequencies are "exact", provided the supercell contains the complete list of neighbors.

Wave vectors \mathbf{k}_{s} are commensurate with the supercell size.

Exact wave vectors

Internal energy:

$$E = \frac{1}{2} r \int_0^\infty d\omega \, g(\omega) \, (\hbar\omega) \coth\left(\frac{\hbar\omega}{2k_BT}\right)$$

Free energy:

$$F = rk_BT \int_0^\infty d\omega \, g(\omega) \ln\left[2\sinh\left(\frac{\hbar\omega}{2k_BT}\right)\right]$$

Entropy:
$$S = rk_B \int_0^\infty d\omega \, g(\omega) \left\{ \left(\frac{\hbar\omega}{2k_BT} \right) \left[\coth\left(\frac{\hbar\omega}{2k_BT} \right) - 1 \right] - \ln\left[1 - \exp\left(-\frac{\hbar\omega}{k_BT} \right) \right] \right\}$$

Heat capacity
$$C_{V}$$
:
$$C = rk_B \int_0^\infty d\omega g(\omega) \left(\frac{\hbar\omega}{k_B T}\right)^2 \frac{exp(\frac{\hbar\omega}{k_B T})}{\left[exp\left(\frac{\hbar\omega}{k_B T}\right) - 1\right]^2}$$

Thermal displacements:

$$\begin{split} B_{ij}(\mu) = & \langle U_i(\mu) U_j(\mu) \rangle \\ B_{il}(\mu) = & \frac{\hbar r}{2M_{\mu}} \int_0^\infty d\omega \, g_{il,\mu}(\omega) \, \frac{1}{\omega} \coth\left(\frac{\hbar\omega}{2k_BT}\right) \end{split}$$

PHONON-I

PHONON

- by K.Parlinski (Crakow)
- Linux or MS-windows
- uses a "direct" method to calculate Forceconstants with the help of an ab initio program
- with these Forceconstants phonons at arbitrary k-points can be obtained
- Define your spacegroup
- Define all atoms

http://wolf.ifj.edu.pl/phonon/

Phonons:

 selects symmetry adapted atomic displacements (4 displacements in cubic perovskites)

(Displacement pattern for cubic perovskite)

- select a supercell: (eg. 2x2x2 atom P-type cell)
- calculate all forces for these displacements with high accuracy(WIEN2k)
- → force constants between all atoms in the supercell
- \rightarrow dynamical matrix for arbitrary q-vectors
- → phonon-dispersion ("bandstructure") using PHONON (K.Parlinski)

PHONON-II

- Define an interaction range (supercell)
 - create displacement file
 - transfer case.d45 to Unix
- Calculate forces for all required displacements
 - init_phonon_lapw
 - for each displacement a case_XX.struct file is generated in an extra directory
 - runs nn and lets you define RMT values like:
 1.85 1-16

	NON 4.21				
Eile Symo Par	<u>Create Tools H</u> netry 4 Unit Gell ticles	elp 6 k c 7 k c			
1. TO	SuperCell Data				41 A
		A	в	¢	
	Transform. S=CL	2.00000000	0.0000000	0.0000000	
	from Crys.Cell C L=	0.0000000	2.0000000	0.0000000	
And Barris	to SuperCell S.	0.00000000	0.0000000	2.0000000	
4345 I	Restore symmetry of	crystal space	group:	No	4.00
N 🐂 🛛	Displacement for HF	forces in Ang:	stroms:	0.03000	45 - E 13-144
	Supercell Position F	ile: WIEN2k	Displ.	+/-: <mark>No</mark>	e
21	OK (enter)	Cancel	R. A		
P 44	4 - a		ų.	* * a.	1 (1) 10 (1)
	*** *** *** ***	1	4 a 4 a	1 1 A	
1 apr 1	2. M. 1. 40	e e e e	•¥		

 init_lapw: either without symmetry (and then copies this setup to all case_XX) or with symmetry (must run init_lapw for all case_XX) (Do NOT use SGROUP)
 run_phonon: run_lapw -fc 0.1 -i 40 for each case_XX

PHONON-III

analyze_phonon_lapw

- reads the forces of the scf runs
- generates "Hellman-Feynman" file case.dat and a "symmetrized HFfile case.dsy (when you have displacements in both directions)
 - check quality of forces:
 - sum F_x should be small (0)
 - abs(F_x) should be similar for +/displacements
- transfer case.dat (dsy) to Windows
- Import HF files to PHONON
- Calculate force constants
- Calculate phonons, analyze phonons eigenmodes, thermodynamic functions

- phonon frequencies (compare with IR, raman, neutrons)
- identify dynamically unstable structures, describe phase transitions, find more stable (low T) phases.

Pyrochlore structure of $Y_2Nb_2O_7$: strong phonon instabilities \rightarrow phase transition

from E. Assmann, TU Vienna

needs wannier90 !

Wannier90: A Tool for Obtaining Maximally-Localised Wannier Functions A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt and N. Marzari *Comput. Phys. Commun.* **178**, 685 (2008) [http://wannier.org]

 $\Omega = \sum_{n} [\langle \mathbf{0}n | r^2 | \mathbf{0}n \rangle - \langle \mathbf{0}n | \mathbf{r} | \mathbf{0}n \rangle^2] = \sum_{n} [\langle r^2 \rangle_n - \bar{\mathbf{r}}_n^2] \quad \text{choose U(k) to minimize } \Omega$

maximally localized wannier functions

- choose U(k) to minimize spread → MLWF
- total spread $\Omega = \Omega_{\rm I} + \widetilde{\Omega}$ can be split into gauge-invariant part and rest
- 🛶 minimize <u>Ω</u>

• wannier90 computes $U(\mathbf{k})$ in this way

[Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)] http://wannier.org

wien2wannier provides interface to Wien2k

[Kuneš, Wissgott et al., Comp. Phys. Commun. 181, 1888]

Disentanglement

from Marzari et al.

fcc-Cu, 5 *d*-like WF, 2 interstitial *s*-like WF

num_bands = 12
num_wann = 7

- other bands may cross target manifold
- must select bands to Wannierize
 - $V(\mathbf{k}) (J(\mathbf{k}) \times N)$
 - selection determines $\Omega_{\rm I}$

- analysis of chemical bonding
- electric polarization and orbital magnetization
 Oleg Rubel's talk
- Wannier interpolation $\mathcal{K} \to \mathcal{G}$ $H(\mathbf{k})|_{\mathcal{K}} \xrightarrow{\mathcal{F}} H(\mathbf{k})|_{\mathcal{K}^{-1}} \xrightarrow{\mathcal{F}^{-1}} H(\mathbf{k})|_{\mathcal{G}}$
- Wannier functions as basis functions
 - tight-binding model $H(\mathbf{k}) = U^+(\mathbf{k}) \epsilon(\mathbf{k}) U(\mathbf{k})$
 - realistic dynamical mean-field theory (DMFT)

workflow using wien2wannier

- Regular SCF calculation
- Band structure plot
- Initialize wien2wannier (init_w2w):
 - select bands, init. projections, # of WF (case.inwf file)
 - projected band structure "bands_plot_project" (case.win file)
 - additional options related to entanglement (case.win file)
- Compute overlap matrix element M_{mn}, A_{mn} (x w2w)
- Perform Wannierization (x wannier90):
 - position of Wannier centers and spreads (case.wout file)
 - Wannier hamiltonian (case_hr.dat file)
- Initialize plotting, select plotting range, r-mesh (write_inwplot)
- Evaluate WF on the r-mesh selected (x wplot)
- Convert the output of wplot into xcrysden format for plotting (wplot2xsf)
 - Plot WF [Wissgott, Kuneš et al. Phys. Rev. B 85, 205133]

Relation to Polarization

Si

GaAs

symmetric

non-symmetric $\mathbf{P} = \frac{e}{V} \left(\sum_{\tau \neq \tau} Z_{\tau} \mathbf{r}_{\tau} - \sum_{n} \mathbf{r}_{n} \right)$

lonic part

Electronic part

King-Smith & Vanderbilt, Phys. Rev. B 47, 1651 (1993)

from O. Rubel (Lakehead University) needs wien2wannier, Python 2.7.x, numpy Comput.Phys.Commun. 184, 647 (2013)

WIEN

Piezoelectricity

Effective charge

Dielectric screening

What is Polarization ?

We will now assume that in each atom there are charges q separated by a distance δ , so that $q\delta$ is the dipole moment per atom. (We use δ because we are already using d for the plate separation.) If there are N atoms per unit volume, there will be a *dipole moment per unit volume* equal to $Nq\delta$. This dipole moment per unit volume will be represented by a vector, P. Needless to say, it is in the direction of the individual dipole moments, i.e., in the direction of the charge

Polarization for periodic solids is undefined

Pioneered by King-Smith, David Vanderbilt and Raffaele Resta

All measurable physical quantities are related to the **change** in polarization!

 $\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)}$

$$\Delta \mathbf{P} = \mathbf{P}^{(1)} - \mathbf{P}^{(0)} = \Omega^{-1} \int dt \int_{\text{cell}} d\mathbf{r} \mathbf{j}(\mathbf{r}, t)$$

transient current density
$$\mathbf{P} = \mathbf{P}_{\text{ion}} + \mathbf{P}_{\text{el}}$$
$$\mathbf{P}_{\text{ion}} = \frac{e}{\Omega} \sum_{s}^{\text{atoms}} Z_{s}^{\text{ion}} \mathbf{r}_{s}$$
$$\mathbf{In \text{Wien2k } Z_{s}^{\text{ion}} \text{ is the core charge}}$$

$$-\mathbf{P}_{\rm el} = \Omega^{-1} \int d\mathbf{r} \, \mathbf{r} \rho(\mathbf{r}) = \Omega^{-1} \sum_{n}^{\rm bands} \langle \psi_n | \mathbf{r} | \psi_n \rangle \quad \equiv \frac{2ei}{(2\pi)^3} \sum_{n}^{\rm bands} \int_{\rm BZ} d\mathbf{k} \, \langle u_{n\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle$$

King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651 (1993)

$$\mathrm{d}\varphi_n = -i\langle u_{n\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle \cdot \mathrm{d}\mathbf{k} = -i\ln\langle u_{n\mathbf{k}} | u_{n(\mathbf{k}+\mathbf{d}\mathbf{k})} \rangle$$

$$S_{mn}(\mathbf{k}_{j}, \mathbf{k}_{j+1}) = \langle u_{m\mathbf{k}_{j}} | u_{n\mathbf{k}_{j+1}} \rangle \quad \text{WIEN2WANNIEF}$$

$$\varphi(\mathbf{k}_{\parallel}) = 2 \operatorname{Im} \left[\ln \prod_{j=0}^{J-1} \det S_{M \times M}(\mathbf{k}_{j}, \mathbf{k}_{j+1}) \right]$$

$$\varphi_{el,\alpha} = S_{\perp}^{-1} \int_{S_{\perp}} dS_{\perp} \varphi(\mathbf{k}_{\parallel})$$

$$P_{\alpha} = \frac{e(\varphi_{el,\alpha} + \varphi_{ion,\alpha})}{2\pi\Omega} R_{\alpha}$$

Polarization change for 2 cases:

- structure file must preserve the symmetry
- begin with the lowest symmetry (λ_1) case
- copy case λ_1 to case λ_0
- edit structure file for case λ_0
- do <u>not</u> initialize calculation (init_lapw)
- update density (x dstart)
- run SCF cycle (run_lapw)
- run BerryPI

$$P_{\alpha} = \frac{e(\varphi_{\mathrm{el},\alpha} + \varphi_{\mathrm{ion},\alpha})}{2\pi\Omega} R_{\alpha}$$

WIEN

$$\Delta \mathbf{P} = \mathbf{P}^{(0)} - \mathbf{P}^{(1)} \pm \frac{e}{\Omega} \mathbf{R}$$

• cannot determine large polarization difference ~I C/m²

Solution: $\lambda_1 \Leftrightarrow \lambda_{1/2} \Leftrightarrow \lambda_1$

$$P_{\rm s} = P_{\rm nc} - P_{\rm c}$$

Born effective charge is related to polarization

$$Z^*_{s,\alpha\beta} = \frac{\Omega}{e} \; \frac{\partial P_\alpha}{\partial r_{s,\beta}}$$

- P Polarization
- r atom position
- Ω unit cell volume
- e elementary charge

Introduce small displacements $\pm \Delta r \ll a_0$

Need to compute the polarization difference between 2 structures: $dP = P(+\Delta r) - P(-\Delta r)$

