

Tomoyuki Yamamoto Waseda University, Japan

22nd WIEN2k workshop

Jun. 26th, 2015@Singapore

Outline

 What is core-level spectroscopy XPS, XAS, XES, EELS, AES, XMCD

 How to analyze these experimental spectra with WIEN2k XSPEC, TELNES, others

Examples

- Various kinds of semiconductors
- Ultra dilute dopants in functional materials
- Dilute magnetic material

<u>References</u>

Nature Materials 2 (2003) 541.

- Phys. Rev. B70 (2004) 045103
- J. Am. Ceram. Soc. 88 (2005) 2013.
- J. Phys.: Condens. Matter 21 (2009) 104211.

Solid State Comm. 151 (2011) 1749.

How do you know electronic structure?

You can obtain theoretical (E-k) band structure and density of states with first-principles calc. such as WIEN2k.

How do you know them experimentally?

Core-Level spectroscopy

What is core-level spectroscopy?

Spectrum by electronic transition of core electrons1) from core to unoccupied or ionized states2) from outer to inner shells

Direct comparison with theoretical electronic structure is possible.

Theoretical spectrum -within IPA-

Transition probability

 $P \propto |\langle \psi_f | h | \psi_i \rangle|^2$

final state initial state wave function wave function

Selection rule for light emission and absorption from the Fermi's golden rule: h->r $\Delta I = \pm 1$

XAS (X-ray absorption spectrum)

X-ray absorption near-edge structure (XANES)

XES (X-ray emission spectrum)

Run XSPEC

Electric dipole Selection rule $\Delta I = \pm 1$ e.g., s->p, p->s,d

Spectral profile is a reflection of partial density of state in unoccupied state

XPS (X-ray photoemission spectrum)

look at the eigenvalue or the number of electrons in MT (Slater's transition state method (1/2 core hole))

XPS (X-ray photoemission spectrum)

Valence XPS (not a core-level spectrum)

$$I(E) = \sum_{i} P_{i}D_{i}(E)$$
Ionization probability
for *i*th component

Partial density of state *i*th component

ELNES with TEM

Transmission Electron Microprobe

High spatial resolution

•chemical state analysis is possible in nano-meter scale within a short time

 Good for light elements and Ledge of 3d transition metal

Final state rule

Final state determine the spectral shape!

- In the X-ray absorption process, <u>core-hole</u> exists in the final states, which must be considered in the calculation.
- In the X-ray emission process, holes exist in valence state, which can be well screened. Then we do not care much on this effect in the calc.

Core-hole effect

After the electron excitation, core-hole is created at the final state of X-ray absorption. Due to this core-hole, wave function is localized

XANES analysis with WIEN2k

Approx. 100 atoms super-cell(reduce the interaction among core-hole)

Calculate both initial and final states (introduce core-hole effect)

Transition probability is obtained as a product of partial density of state and radial part of transision probability for corresponding atomic orbitals

Transition energy from the difference in total electronic energy between initial and final states

Flow of XANES analysis with WIEN2k

- Create super-cell (x supercell)
- Create core-hole (case.inc)
- Add one electron (excited electron) (case.in2)
- Do scf calc.
- Go into "XSPEC" in "Tasks"
- Increase bands in unoccupied states (case.in1)
- Remove added electron (case.in2)
- Non-scf calc. (x lapw1, x lapw2 –qtl)
- Prepare input for XSPEC (case.inxs)
- Do XSPEC -> you can get theoretical XANES

III-V nitrides and ZnO

N K-edge of AIN

N K-edge of AIN

N K-edges of GaN, AIN, InN

Cation L edges of GaN, AIN, InN

Cation K edges of GaN, AIN, InN

w-, zb-, rs-ZnO

AI K-edges of AI, AIN, AI₂O₃

Chemical shift (AI K-edge)

Angle dependence of XANES

Angle dependence of XANES (Ga-K of GaN)

Angle dependence of XANES (Zn-K of ZnO)

Phys. Rev. B70 (2004) 045103

a

xspec input file

XES

NbC: C K 2 1 0	(Title) (atom) (n core) (I core)
0,0.5,0.5	(split, int1, int2)
-20,0.1,3 EMIS	(type of spectrum)
0.35 0.25	(S) (gamma0)
0.3	(W) (band ranges ALITO or MAN
-7.21	(E0 in eV)
-10.04 -13.37	(E1 in eV) (E2 in eV)

XAS

 NbC: C K
 (Title)

 2
 (atom)

 1
 (n core)

 0
 (l core)

 0,0.5,0.5
 (split, int1, int2)

 -2,0.1,30
 (EMIN,DE,EMAX in eV)

 ABS (type of spectrum)

 0.5
 (S)

 0.25
 (gamma0)

Details in user guide

EELS in wien2k (telnes2 program)

- Within the dipole approximation the momentum transfer vector in non-relativistic EELS playes the same role as polarization vector in XAS
- *telnes2* program also handles non-dipole transitions and relativistic corrections

See details in users guide

When independent particles approximation does not work

we have to go

Beyond independent particles approximation

summary

- standard calculations (optical and X-ray spectra) always operate within independent particles approximation
 - Band details matter (band gap problem)
 - No electron-hole correlation
 - Core hole helps for K edges in XAS but not for L23
- Going beyond IPA is expensive but possible