

From APW to LAPW to (L)APW+lo

Karlheinz Schwarz

Institute for Material Chemistry TU Wien Vienna University of Technology

Crystal structure

- Unit cell (defined by 3 lattice vectors) leading to 7 crystal systems
- Bravais lattice (14)
- Atomic basis (Wyckoff position)
- Symmetries (rotations, inversion, mirror planes, glide plane, screw axis)
- Space group (230)
- Wigner-Seitz cell
- Reciprocal lattice (Brillouin zone)
- Electronic structure
 - Periodic boundary conditions
 - Bloch theorem (k-vector), Bloch function
 - Schrödinger equation (HF, DFT)

Assuming an ideal infinite crystal we define a unit cell by

Unit cell: a volume in space that fills space entirely when translated by all lattice vectors.

The obvious choice:

a parallelepiped defined by **a**, **b**, **c**, three basis vectors with

the best **a**, **b**, **c** are as orthogonal as possible

the cell is as symmetric as possible (14 types)

A unit cell containing one lattice point is called primitive cell.

F (fcc)

P (cP)

I (bcc)

7 Crystal systems and 14 Bravais lattices

Triclinic	1	"no" symmetry
Monoclinic (P, C)	2	Two right angles
Orthorhombic (P, C, I, F)	4	Three right angles
Tetragonal (P, I)	2	Three right angles + 4 fold rotation
Cubic (P, I, F)	3	Three right angles + 4 fold + 3 fold
Trigonal (Rhombohedral)	1	Three equal angles (\neq 90°)+ 3 fold
Hexagonal	1	Two right and one 120° angle + 6 fold

Form connection to all neighbors and span a plane normal to the connecting line at half distance

$$\left[-\frac{1}{2}\nabla^2 + V(r)\right]\Psi(r) = E\Psi(r)$$

V(x) has lattice periodicity ("translational invariance"): V(x)=V(x+a)The electron density $\rho(x)$ has also lattice periodicity, however, the wave function does NOT:

$$\rho(x) = \rho(x+a) = \Psi^*(x)\Psi(x) \qquad but:$$

$$\Psi(x+a) = \mu\Psi(x) \implies \mu^*\mu = 1$$

Application of the translation τ g-times:

$$\tau^{g}\Psi(x) = \Psi(x + ga) = \mu^{g}\Psi(x)$$

The wave function must be uniquely defined: after G translations it must be identical (G a: periodicity volume):

$$\tau^{G}\Psi(x) = \Psi(x + Ga) = \mu^{G}\Psi(x) = \Psi(x)$$

$$\Rightarrow \mu^{G} = 1$$

$$\mu = e^{2\pi i \frac{g}{G}} \qquad g = 0, \pm 1 \pm 2, \dots$$

$$Def.: \qquad k = \frac{2\pi}{a} \frac{g}{G} \qquad \mu = e^{ika}$$

$$Bloch \ condition: \qquad \Psi(x + a) = e^{ika}\Psi(x) = \Psi_{k}$$

Wave functions with Bloch form:

Replacing *k* by *k*+*K*, where *K* is a reciprocal lattice vector, fulfills again the Bloch-condition.

 \rightarrow k can be restricted to the first Brillouin zone .

$$e^{i\frac{2\pi}{a}K} = 1 \qquad \qquad -\frac{\pi}{a} < k < \frac{\pi}{a}$$

Concepts when solving Schrödingers-equation in solids

- Every observable quantity of a quantum system can be calculated from the density of the system ALONE (Hohenberg, Kohn, 1964).
- The density of particles interacting with each other can be calculated as the density of an auxiliary system of non-interacting particles (Kohn, Sham, 1965).

Walter Kohn, Nobel Prize 1998 Chemistry

"Self-consistent Equations including Exchange and Correlation Effects" W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Literal quote from Kohn and Sham's paper:"... We do not expect an accurate description of chemical binding."

Hohenberg-Kohn theorem: (exact)

The total energy of an interacting inhomogeneous electron gas in the presence of an external potential $V_{ext}(r)$ is a functional of the density ρ

$$E = \int V_{ext}(\vec{r})\rho(\vec{r})d\vec{r} + F[\rho]$$

Kohn-Sham: (still exact!)

$$E = T_o[\rho] + \int V_{ext} \rho(\vec{r}) d\vec{r} + \frac{1}{2} \int \frac{\rho(\vec{r})\rho(\vec{r}')}{|\vec{r}' - \vec{r}|} d\vec{r} d\vec{r}' + E_{xc}[\rho]$$

In KS the many body problem of interacting electrons and nuclei is mapped to a one-electron reference system that leads to the same density as the real system.

 We divide the density of the N-1 electron system into the total density n(r) and an exchangecorrelation hole:

Properties of the exchange-correlation hole:

- Locality
- Pauli principle
- the hole contains ONE electron
- The hole must ne negative
- The exchange hole affects electrons with the same spin and accounts for the Pauli principle
- In contrast, the correlation-hole accounts for the Coulomb repulsion of electrons with the opposite spin. It is short range and leads to a small redistribution of charge. The correlation hole contains NO charge:

$$h(r_0, r) \xrightarrow[|r-r_0| \to \infty]{} 0$$

$$h(r_0, r) \xrightarrow{|r-r_0| \to 0} -n(r_0)$$

$$\int dr \ h(r_0, r) = -1$$

$$h(r_0, r) \le 0$$

$$dr h_c(r_0, r) = 0$$

New (better ?) functionals are still an active field of research

- **CoO**
 - in NaCl structure
 - antiferromagnetic: AF II
 - insulator
 - t_{2g} splits into a_{1g} and e_g '
 - GGA almost spilts the bands

$$\Delta V_{xc}^{\uparrow} = V_{xc}^{\uparrow GGA} - V_{xc}^{\uparrow LSDA}$$

- Central Co atom distinguishes
 - between Co^{\uparrow}

Angular correlation

Lattice parameters (Å)				
	Exp.	LDA	PBE	WC
Со	2.51	2.42	2.49	2.45
Ni	3.52	3.42	3.52	3.47
Cu	3.61	3.52	3.63	3.57
Ru	2.71	2.69	2.71	2.73
Rh	3.80	3.76	3.83	3.80
Pd	3.88	3.85	3.95	3.89
Ag	4.07	4.01	4.15	4.07
Ir	3.84	3.84	3.90	3.86
Pt	3.92	3.92	4.00	3.96
Au	4.08	4.07	4.18	4.11

3d elements:

 PBE superior, LDA much too small

4d elements:

LDA too small, PBE too large

New functional

Wu-Cohen (WC)

Z.Wu, R.E.Cohen, PRB 73, 235116 (2006)

5d elements:

 LDA superior, PBE too large

Approximations for $E_{\rm xc}$

- ► LDA: $E_{\rm xc}^{\rm LDA} = \int f(\rho(\mathbf{r})) d^3 r$
- GGA: $E_{\rm xc}^{\rm GGA} = \int f(\rho(\mathbf{r}), |\nabla \rho(\mathbf{r})|) d^3r$
- ► MGGA: $E_{\rm xc}^{\rm MGGA} = \int f(\rho(\mathbf{r}), |\nabla \rho(\mathbf{r})|, \nabla^2 \rho(\mathbf{r}), t(\mathbf{r})) d^3 r$

$$\blacktriangleright \text{ LDA+}U: E_{\text{xc}}^{\text{LDA+}U} = E_{\text{xc}}^{\text{LDA}} + E_{\text{ee}} - E_{\text{dc}}$$

► GGA+U:
$$E_{\rm xc}^{\rm GGA+U} = E_{\rm xc}^{\rm GGA} + E_{\rm ee} - E_{\rm dc}$$

• hybrid: $E_{xc}^{hybrid} = E_{xc}^{DFT} + \alpha (E_x^{HF} - E_x^{DFT})$ where

$$E_{\mathbf{x}}^{\mathrm{HF}} = -\frac{1}{2} \sum_{\sigma} \sum_{\substack{n,\mathbf{k}\\n',\mathbf{k'}}} W_{\mathbf{k}} W_{\mathbf{k}'} \int \int \frac{\psi_{n\mathbf{k}}^{\sigma*}(\mathbf{r})\psi_{n'\mathbf{k}'}^{\sigma*}(\mathbf{r}')\psi_{n\mathbf{k}'}^{\sigma}(\mathbf{r})\psi_{n\mathbf{k}}^{\sigma}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d^{3}r d^{3}r'$$

 Only for certain atoms and electrons of a given angular momentum *l*

$$E_{\mathrm{xc}}^{\mathrm{hybrid}} = E_{\mathrm{xc}}^{\mathrm{DFT}}[\rho^{\sigma}] + \alpha \left(E_{\mathrm{x}}^{\mathrm{HF}}[n_{m_{i}m_{j}}^{\sigma}] - E_{\mathrm{x}}^{\mathrm{DFT}}[\rho_{\ell}^{\sigma}] \right)$$

$$E_{\mathrm{x}}^{\mathrm{HF}}[n_{m_{i}m_{j}}^{\sigma}] = -\frac{1}{2} \sum_{\sigma} \sum_{m_{1},m_{2},m_{3},m_{4}}^{\ell} n_{m_{1}m_{2}}^{\sigma} n_{m_{3}m_{4}}^{\sigma} \langle m_{1}m_{3} | v_{\mathrm{ee}} | m_{4}m_{2} \rangle$$

$$\langle m_{1}m_{2} | v_{\mathrm{ee}} | m_{3}m_{4} \rangle = \sum_{k=0}^{2\ell} a_{k}F_{k}$$

The Slater integrals F_k are calculated according to P.Novák et al., phys.stat.sol (b) <u>245</u>, 563 (2006)

Table: Lattice constant *a* (Å), bulk modulus *B* (GPa), total and orbital magnetic moment *M* and M_{ℓ} ($\mu_{\rm B}$), fundamental band gap $\Delta_{\rm fund}$ (eV), and optical band gap $\Delta_{\rm opt}$ (eV) of AFII phase of FeO.

	а	В	$M(M_\ell)$	Δ_{fund}	Δ_{opt}	
LDA	4.18	230	3.44 (0.09)	0.0	0.0	
PBE	4.30	183	3.49 (0.08)	0.0	0.0 🦵 1	metallic
LDA+U	4.28	199	4.23 (0.63)	1.7	2.2	
B3PW91	4.35	172	4.15 (0.61)	1.3	1.8	
PBE0	4.40	155	4.30 (0.75)	1.2	1.6	jap
Fock-0.35	4.31	195	4.27 (0.68)	2.1	2.4	
Fock-0.5	4.34	189	4.32 (0.68)	2.2	2.7 丿	
Expt.	4.334	150-180	3.32, 4.2	2.4	0.5 ¹ , 2.4 ²	

¹Assigned to Fe 3*d*/O 2*sp* \rightarrow Fe 4*s* transitions. ²Assigned to Fe 3*d*/O 2*sp* \rightarrow Fe 3*d* transitions.

F.Tran, P.Blaha,K.Schwarz, P.Novák, PRB <u>74</u>, 155108 (2006)

- Ψ cannot be found analytically
- complete "numerical" solution is possible but inefficient
- Ansatz:
 - Iinear combination of some "basis functions"

$$\Psi_k = \sum_{K_n} c_{k_n} \Phi_{k_n}$$

U

- different methods use different basis sets !
- finding the "best" wave function using the variational principle:

$$\langle E_k \rangle = \frac{\left\langle \Psi_k^* \middle| H \middle| \Psi_k \right\rangle}{\left\langle \Psi_k^* \middle| \Psi_k \right\rangle} \qquad \frac{\partial E_k}{\partial c_{k_n}} = 0$$

 this leads to the famous "Secular equations", i.e. a set of linear equations which in matrix representation is called "generalized eigenvalue problem"

$$HC = ESC$$

H, S : hamilton and overlap matrix; C: eigenvectors, E: eigenvalues

plane waves

- pseudo potentials
- PAW (projector augmented wave) by P.E.Blöchl
- space partitioning (augmentation) methods
 - LMTO (linear muffin tin orbitals)
 - ASA approx., linearized numerical radial function
 - + Hankel- and Bessel function expansions
 - full-potential LMTO
 - ASW (augmented spherical wave)
 - similar to LMTO
 - KKR (Korringa, Kohn, Rostocker method)
 - solution of multiple scattering problem, Greens function formalism
 - equivalent to APW
 - (L)APW (linearized augmented plane waves)
- LCAO methods
 - Gaussians, Slater, or numerical orbitals, often with PP option)

pseudopotential plane wave methods

• plane waves form a "complete" basis set, however, they "never" converge due to the rapid oscillations of the atomic wave functions χ close to the nuclei

 let's get rid of all core electrons and these oscillations by replacing the strong ion-electron potential by a much weaker (and physically dubious) pseudopotential

 Hellmann's 1935 combined approximation method

- "real" potentials contain the Coulomb singularity -Z/r
- the wave function has a cusp and many wiggles,
- chemical bonding depends mainly on the overlap of the wave functions between neighboring atoms (in the region between the nuclei) →

APW (J.C.Slater 1937)

- Non-linear eigenvalue problem
- Computationally very demanding
- LAPW (O.K.Anderssen 1975)
 - Generalized eigenvalue problem
 - Full-potential
- Local orbitals (D.J.Singh 1991)
 - treatment of semi-core states (avoids ghostbands)
- APW+lo (E.Sjöstedt, L.Nordstörm, D.J.Singh 2000)
 - Efficiency of APW + convenience of LAPW
 - Basis for

K.Schwarz, DFT calculations of solids with LAPW and WIEN2k Solid State Chem.**176**, 319-328 (2003)

K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.**147**, 71-76 (2002)

Numerical search for those energies, for which the det[H-ES] vanishes. Computationally very demanding. "Exact" solution for given MT potential!

expand u_l at fixed energy E_l and add $\dot{u}_l = \partial u_l / \partial \varepsilon$

value and slope

→ General eigenvalue problem (diagonalization)

→ additional constraint requires more PWs than APW

Atomic sphere approximation (ASA)

- overlapping spheres "fill" all volume
- potential spherically symmetric

- "muffin-tin" approximation (MTA)
 - non-overlapping spheres with spherically symmetric potential +
 - interstitial region with V=const.

- "full"-potential
 - no shape approximations to V

SrTiO₃

Full potential

Muffin tin approximation

TiO₂ rutile

The potential (and charge density) can be of general form (no shape approximation)

$$V(r) = \begin{cases} \sum_{LM} V_{LM}(r) Y_{LM}(\hat{r}) & r < R_{\alpha} \\ \sum_{K} V_{K} e^{i\vec{K}.\vec{r}} & r \in I \end{cases}$$

 Inside each atomic sphere a local coordinate system is used (defining LM)

For example: Ti

- Valences states
 - High in energy
 - Delocalized wavefunctions
- Semi-core states
 - Medium energy
 - Principal QN one less than valence (e.g. in Ti 3p and 4p)
 - not completely confined inside sphere
- Core states
 - Low in energy
 - Reside inside sphere

1 Ry =13.605 eV

$$\Phi_{LO} = [A_{\ell m} u_{\ell}^{E_{1}} + B_{\ell m} \dot{u}_{\ell}^{E_{1}} + C_{\ell m} u_{\ell}^{E_{2}}]Y_{\ell m}(\hat{r})$$

LOs

- are confined to an atomic sphere
- have zero value and slope at R
- Can treat two principal QN n for each azimuthal QN l
 (e.g. 3p and 4p)
- Corresponding states are strictly orthogonal
 - (e.g.semi-core and valence)
- Tail of semi-core states can be represented by plane waves
- Only slightly increases the basis set (matrix size)

D.J.Singh, Phys.Rev. B 43 6388 (1991)

E.Sjöstedt, L.Nordström, D.J.Singh, *An alternative way of linearizing the augmented plane wave method,* Solid State Commun. 114, 15 (2000)

- Use APW, but at fixed E_{I} (superior PW convergence)
- Linearize with additional local orbitals (lo) (add a few extra basis functions)

$$\Phi_{k_n} = \sum_{\ell m} A_{\ell m}(k_n) u_{\ell}(E_{\ell}, r) Y_{\ell m}(\hat{r})$$

$$\Phi_{lo} = [A_{\ell m} u_{\ell}^{E_1} + B_{\ell m} \dot{u}_{\ell}^{E_1}] Y_{\ell m}(\hat{r})$$

optimal solution: mixed basis

- use APW+lo for states, which are difficult to converge: (f or d- states, atoms with small spheres)
- use LAPW+LO for all other atoms and angular momenta

SES (sodium electro solodalite)

K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.**147**, 71-76 (2002) e.g. force (F_y) on oxygen in SES vs. # plane waves:

- in LAPW changes sign and converges slowly
- in APW+lo better convergence
- to same value as in LAPW

Atomic partial waves

LAPW

$$\Phi_{k_n} = \sum_{\ell m} [A_{\ell m}(k_n) u_{\ell}(E_{\ell}, r) + B_{\ell m}(k_n) \dot{u}_{\ell}(E_{\ell}, r)] Y_{\ell m}(\hat{r})$$

APW+lo

$$\Phi_{k_n} = \sum_{\ell m} A_{\ell m}(k_n) u_{\ell}(E_{\ell}, r) Y_{\ell m}(\hat{r})$$

Plane Waves (PWs)

$$e^{i(\vec{k}+\vec{K}_n).\vec{r}}$$

- match at sphere boundary
 - LAPW
 - value and slope $A_{\ell m}(k_n), B_{\ell m}(k_n)$
 - APW

value
$$A_{\ell m}(k_n)$$

plus another type of local orbital (lo)

E.Sjöststedt, L.Nordström, D.J.Singh, SSC 114, 15 (2000)

- Use APW, but at fixed E_{I} (superior PW convergence)
- Linearize with additional lo (add a few basis functions)

optimal solution: mixed basis

- use APW+lo for states which are difficult to converge: (f- or d- states, atoms with small spheres)
- use LAPW+LO for all other atoms and angular momenta

A summary is given in

K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.**147**, 71-76 (2002)

The WIEN2k authors

An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties

> Peter Blaha Karlheinz Schwarz Georg Madsen Dieter Kvasnicka Joachim Luitz

November 2001 Vienna, AUSTRIA Vienna University of Technology

http://www.wien2k.at

over 1250 licenses worldwide

Europe: A, B, CH, CZ, D, DK, ES, F, FIN, GR, H, I, IL, IRE, N, NL, PL, RO, S, SK, SL, SI, UK (ETH Zürich, MPI Stuttgart, FHI Berlin, DESY, TH Aachen, ESRF, Prague, IJS Ljubjlana, Paris, Chalmers, Cambridge, Oxford)

licenses

America: ARG, BZ, CDN, MX, USA (MIT, NIST, Berkeley, Princeton, Harvard, Argonne NL, Los Alamos NL, Oak Ridge NL, Penn State, Purdue, Georgia Tech, Lehigh, John Hopkins, Chicago, Stony Brook, SUNY, UC St.Barbara, UCLA)

<u>far east:</u> AUS, China, India, JPN, Korea, Pakistan, Singapore,Taiwan (Beijing, Tokyo, Osaka, Kyoto, Sendai, Tsukuba, Hong Kong)

50 industries (Canon, Eastman, Exxon, Fuji, Hitachi, IBM, Idemitsu Petrochem., Kansai, Komatsu, Konica-Minolta, A.D.Little, Mitsubishi, Mitsui Mining, Motorola, NEC, Nippon Steel, Norsk Hydro, Osram, Panasonic, Samsung, Seiko Epson, Siemens, Sony, Sumitomo,TDK,Toyota).

FULL-POTENTIAL, LINEARIZED AUGMENTED PLANE WAVE PROGRAMS. FOR CRYSTALLINE SYSTEMS

P. BLAHA, K. SCHWARZ, and P. SORANTIN

Institut für Technische Elektrochemie, Technische Universität Wien, A-1060 WIEN, Austria

and

S.B. TRICKEY

Quantum Theory Project, Depts. of Physics and of Chemistry, University of Florida, Gainesville, FL 32611, USA

PROGRAM SUMMARY

Title of program: WIEN

Computer Physics Communications 59 (1990) 399-415

- Authors of WIEN2k
 - P. Blaha, K. Schwarz, D. Kvasnicka, G. Madsen and J. Luitz
- Other contributions to WIEN2k
 - C. Ambrosch (Univ. Leoben, Austria), optics
 - U. Birkenheuer (Dresden), wave function plotting
 - R. Dohmen und J. Pichlmeier (RZG, Garching), parallelization
 - C. Först (Vienna), afminput
 - K. Jorrisen (U.Washington) core-level spectra
 - R. Laskowski (Vienna), non-collinear magnetism
 - L.D. Marks (Northwestern U., USA) density mixing
 - P. Novák and J. Kunes (Prague), LDA+U, SO
 - C. Persson (Uppsala), irreducible representations
 - V. Petricek (Prague) 230 space groups
 - M. Scheffler (Fritz Haber Inst., Berlin), forces, optimization
 - D.J.Singh (NRL, Washington D.C.), local orbitals (LO), APW+lo
 - E. Sjöstedt and L Nordström (Uppsala, Sweden), APW+lo
 - J. Sofo and J.Fuhr (Penn State, USA), Bader analysis
 - B. Sonalkar (Vienna), non-linear optics
 - B. Yanchitsky and A. Timoshevskii (Kiev), space group

and many others

A series of WIEN workshops were held

1st	Vienna	April	1995	Wien95
2nd	Vienna	April	1996	
■ 3rd	Vienna	April	1997	Wien97
4st	Trieste, Italy	June	1998	
5st	Vienna	April	1999	
6th	Vienna	April	2000	
7th	Vienna	Sept.	2001	Wien2k
8th	Esfahan, Iran	April	2002	
•	Penn State, USA	July	2002	
9th	Vienna	April	2003	
10th	Penn State, USA	July	2004	
11th	Kyoto, Japan	May	2005	
-	IPAM, Los Angeles, USA	Nov.	2005	
12th	Vienna	April	2006	
13th	Penn State, USA	June	2007	
14th	Singapore	July	2007	
15th	Vienna	March	2008	

APW + local orbital method (linearized) augmented plane wave method

Total wave function

$$\Psi_k = \sum_{K_n} C_{k_n} \phi_{k_n}$$

n...50-100 PWs /atom

Variational method:

$$< E >= \frac{< \Psi / H / \Psi >}{< \Psi / \Psi >} \qquad \frac{\delta < E >}{\delta C_{k_n}} = 0$$
upper bound

Generalized eigenvalue problem: HC=ESCDiagonalization of (real or complex) matrices of size 10.000 to 50.000 (up to 50 Gb memory)

Irreducible BZ (IBZ)

- The irreducible wedge
- Region, from which the whole BZ can be obtained by applying all symmetry operations
- Bilbao Crystallographic Server:
 - www.cryst.ehu.es/cryst/
 - The IBZ of all space groups can be obtained from this server
 - using the option KVEC and specifying the space group (e.g. No.225 for the fcc structure leading to bcc in reciprocal space, No.229)

- In order to solve $H\Psi = E\Psi$ we need to know the potential V(r)
- for V(r) we need the electron density $\rho(r)$
- the density $\rho(r)$ can be obtained from $\Psi(r)^*\Psi(r)$
- ?? $\Psi(\mathbf{r})$ is unknown before $H\Psi = E\Psi$ is solved ??

Band structure of fcc Cu

w2web GUI (graphical user interface)

Structure generator

- spacegroup selection
- import cif file
- step by step initialization
 - symmetry detection
 - *automatic input generation*
- SCF calculations
 - Magnetism (spin-polarization)
 - Spin-orbit coupling
 - Forces (automatic geometry optimization)
- Guided Tasks
 - Energy band structure
 - $\square DOS$
 - Electron density
 - X-ray spectra
 - *Optics*

Idea and realization

þу

/area51/pblaha/lapw/2005-june/TiC

You have to click "Save Structure" for changes to take effect! Save Structure
Title: TiC
Lattice:
Type: F P Spacegroups from CXY CYZ CXZ R H
1_P1 💌
Lattice parameters in Å 🔽
a=4.3280000386 b=4.3280000386 c=4.3280000386
$\alpha = 90.000000$ $\beta = 90.000000$ $\gamma = 90.000000$
Inequivalent Atoms: 2 Atom 1 Ti 7=22.0 RMT=2.0000 remove atom
Pos 1: x=0.00000000 y=0.00000000 z=0.00000000 remove
add position
Atom 2: C Z=6.0 RMT=1.9000 remove atom
Pos 1: x=0.50000000 y=0.50000000 z=0.50000000 remove add position

No. 136

 $P 4_2/m 2_1/n 2/m$

Structure given by:

spacegroup lattice parameter positions of atoms (basis)

Rutile TiO2: $P4_2/mnm (136)$ a=8.68, c=5.59 bohrTi: (0,0,0)2a

O: (0.304,0.304,0)

- NaCl structure (100) plane
- Valence electrons only
- plot in 2 dimensions
- Shows
 - charge distribution
 - covalent bonding
 - between the Ti-3d and C-2p electrons
 - e_g/t_{2g} symmetry

Download hardcopy in PostScript format	
Select plot type: 3D-plot () Contur-plot Min -0.5 Max 2 Delta 0.1	🔾 with labels 🗌
plot electron density	
edit TiC.in2 reset EMIN	

WIEN2k: P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz

- individual FORTRAN programs linked by shell-scripts
- the output of one program is input for the next
- lapw1/2 can run in parallel on many processors

* fraction of total computation time