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A few solid state concepts

Crystal structure
Unit cell (defined by 3 lattice vectors) leading to 7 crystal systemsUnit cell (defined by 3 lattice vectors) leading to 7 crystal systems
Bravais lattice (14)
Atomic basis (Wyckoff position)
Symmetries (rotations, inversion, mirror planes, glide plane, screw axis) 
Space group (230)
Wigner Seitz cellWigner-Seitz cell
Reciprocal lattice (Brillouin zone)

Electronic structureElectronic structure
Periodic boundary conditions
Bloch theorem (k-vector), Bloch function
Schrödinger equation (HF, DFT)



Unit cell

Assuming an ideal infinite crystal we define a unit cell by 

cUnit cell: a volume in space that 
fills space entirely when translated 
b ll l tti tby all lattice vectors.

The obvious choice:

a parallelepiped defined by a b c

b
αβ

a parallelepiped defined by a, b, c, 
three basis vectors with

the best a, b, c are as orthogonal b
γ

a

as possible

the cell is as symmetric as 
possible (14 types) apossible (14 types)

A unit cell containing one lattice point is called  primitive cell.g p p



Crystal system: e.g. cubic

Axis system a = b = cAxis system a = b = c
α = β = γ = 90°

primitive body centered          face centered

P (cP) I (bcc) F (fcc)



3D lattice types:

7 Crystal systems and 14 Bravais lattices

Triclinic 1 “no” symmetryTriclinic 1 no  symmetry

Monoclinic (P, C) 2 Two right angles

Orthorhombic (P, C, I, F) 4 Three right angles

T t l (P I) 2 Th i ht l 4 f ld t tiTetragonal (P, I) 2 Three right angles + 4 fold rotation

Cubic (P, I, F) 3 Three right angles + 4 fold + 3 fold

Trigonal (Rhombohedral) 1 Three equal angles (≠ 90o)+ 3 fold 

H l 1 T i h d 120 l 6 f ldHexagonal 1 Two right and one 120o angle + 6 fold



Wigner-Seitz Cell

Form connection to all neighbors and span a plane normal
to the connecting line at half distance



Bloch-Theorem:
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V(x) has lattice periodicity  (“translational invariance”): 
V(x)=V(x+a)V(x)=V(x+a)

The electron density ρ(x) has also lattice periodicity, however, 
the wave function does NOT:t e a e u ct o does O
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periodic boundary conditions:

The wave function must be uniquely defined: after G 
translations it must be identical (G a: periodicity volume):( p y )

a
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Bloch functions:

Wave functions with Bloch form:
ikx )()(:)()( axuxuwherexuex ikx

k +==Ψ

Phase factor lattice periodic functionPhase factor               lattice periodic function
Re [ψ(x)]

x

Replacing k by  k+K, where K is a reciprocal lattice vector,
fulfills again the Bloch-condition. 

k can be restricted to the first Brillouin zonek can be restricted to the first Brillouin zone .
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Concepts when solving Schrödingers-equation in solids

( ) lf i(non-)selfconsistent
“Muffin-tin” MT
atomic sphere approximation (ASA)
Full potential : FP

d i l (PP)

Form of
potential

non relativistic

pseudopotential (PP)

H F k ( l i )
exchange and correlation potential

Relativistic treatment 
of the electrons

non relativistic
semi-relativistic
fully-relativistic

Hartree-Fock (+correlations)
Density functional theory (DFT)

Local density approximation  (LDA)
Generalized gradient approximation (GGA)
B d LDA LDA UBeyond LDA: e.g. LDA+U

Schrödinger – equation
(Kohn Sham equation)

k
i

k
i

k
irV ϕεϕ =⎥⎦
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1 2

non periodic Basis functionsRepresentation
of solid

(Kohn-Sham equation)⎦⎣ 2

(cluster)
periodic 
(unit cell)

plane waves : PW
augmented plane waves : APW
atomic oribtals. e.g. Slater (STO), Gaussians (GTO), 

LMTO numerical basis
Treatment of 

spin

of solid

Non-spinpolarized
Spin polarized
(with certain magnetic order)

LMTO, numerical basisspin



ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of a quantum system can
be calculated from the density of the system ALONE
(Hohenberg, Kohn, 1964).

• The density of particles interacting with each other
can be calculated as the density of an auxiliary
system of non-interacting particles (Kohn, Sham,
1965).



Walter Kohn, Nobel Prize 1998 Chemistry

“Self-consistent Equations including Exchange and Correlation Effects”Self consistent Equations including Exchange and Correlation Effects
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Lit l t f K h d Sh ’ “ We do not expect“ We do not expectLiteral quote from Kohn and Sham’s paper:“… We do not expect “… We do not expect 
an accurate description of chemical binding.”an accurate description of chemical binding.”



DFT Density Functional Theory

Hohenberg-Kohn theorem:   (exact)

The total energy of an interacting inhomogeneous electron gas in the 
presence of an external potential Vext(r ) is a functional of the density ρ
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Kohn-Sham: (still exact!)
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Ekinetic E E E E exchange correlation

In KS the many body problem of interacting electrons and nuclei is mapped to

Ekinetic
non interacting

Ene Ecoulomb Eee Exc exchange-correlation

In KS the many body problem of interacting electrons and nuclei is mapped to 
a one-electron reference system that leads to the same density as the real 
system.



Exchange and correlation

We divide the density of the N-1 electron system 
into the total density n(r) and an exchange-
correlation hole:correlation hole:

Properties of the exchange-correlation hole:
Locality
Pauli principle
the hole contains ONE electronthe hole contains ONE electron
The hole must ne negative

Th h h l ff t l t ith thThe exchange hole affects electrons with the 
same spin and accounts for the Pauli principle
In contrast, the correlation-hole accounts for the 
Coulomb repulsion of electrons with the opposite 
spin. It is short range and leads to a small 
redistribution of charge. The correlation hole

t i NO hcontains NO charge:   



Kohn-Sham equations
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New (better ?) functionals are still an active field of research



DFT ground state of iron

LSDA
NMNM 
fcc 
in contrast to
experimentp

GGA
FM GGA

LSDA
bcc 
Correct lattice 
constant

GGA
GGA

Experiment
FM
bcc

LSDA
bcc



CoO AFM-II total energy, DOS

CoO 
in NaCl structure
antiferromagnetic: AF IIantiferromagnetic: AF II 
insulator
t2g splits  into a1g and eg‘
GGA almost spilts the bands

GGA LSDAGGA LSDA



CoO why is GGA better than LSDA

Central Co atom distinguishes

b
LSDAGGA VVV ↑↑↑ −=Δ ↑Cbetween 

and

xcxcxc VVV =Δ ↑Co

↓Co

Angular correlation

Co



FeF2: GGA works surprisingly well

LSDA

GGA

FeF2: GGA splits
t2g into a1g and eg’

Fe-EFG in FeF2:
LSDA: 6 2LSDA:    6.2
GGA:    16.8

agree
exp:     16.5

g



Accuracy of DFT for transition metals

Exp. LDA PBE WC

Lattice parameters (Å)

3d elements: 
PBE superior, LDA 

Co 2.51 2.42 2.49 2.45

Ni 3 52 3 42 3 52 3 47
much too small

4d elements:

Ni 3.52 3.42 3.52 3.47

Cu 3.61 3.52 3.63 3.57

R 2 71 2 69 2 71 2 73 4d elements:
LDA too small, PBE too large

New functional

Ru 2.71 2.69 2.71 2.73

Rh 3.80 3.76 3.83 3.80
New functional

Wu-Cohen (WC)
Pd 3.88 3.85 3.95 3.89

Ag 4.07 4.01 4.15 4.07 Z.Wu, R.E.Cohen,

5d elements:

g

Ir 3.84 3.84 3.90 3.86

Pt 3 92 3 92 4 00 3 96

Z.Wu, R.E.Cohen, 
PRB 73, 235116 (2006)

5d elements:
LDA superior, PBE 
too large

Pt 3.92 3.92 4.00 3.96

Au 4.08 4.07 4.18 4.11



Treatment of exchange and correlation



Hybrid functional: only for (correlated) electrons 

Only for certain atoms
and electrons of a given      
angular momentum ℓ

The Slater integrals Fk are calculated according to 
P Novák et al phys stat sol (b) 245 563 (2006)P.Novák et al., phys.stat.sol (b) 245, 563 (2006)



Application to FeO

metallic

gap

F.Tran, P.Blaha,K.Schwarz, P.Novák,F.Tran, P.Blaha,K.Schwarz, P.Novák,
PRB 74, 155108 (2006)



FeO: LDA vs. LDA+U vs. Hybrids vs. exp



Structure: a,b,c,α,β,γ, Rα , ...
ll i i i

Structure optimization

unit cell atomic positions
k-mesh in reciprocal space

iteration i

S
k ∈ IBZ (irred.Brillouin zone)

V(ρ) = V +V Poisson DFT

DFT Kohn-ShamS
C
F

( )

kkk EV ψψρ =+−∇ )]([ 2
Kohn Sham

k

Ei+1-Ei < ε

V(ρ) = VC+Vxc Poisson, DFT

no

∑ Φ=
nk

nknkk Cψk

E E < ε

Etot f
yes

no
Variational method 0=><

nkC
E

δ
δ

Generalized eigenvalue problemEtot, force

Minimize E, force→0

g p

ESCHC =

∑ ψψρ *

properties
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Solving Schrödingers equation: k
i

k
i

k
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Ψ cannot be found analytically
complete “numerical” solution is possible but inefficientp p
Ansatz: 

linear combination of some “basis functions”  ∑ Φ=Ψ
nn

K
kkk c

different methods use different basis sets !
finding the “best” wave function using the variational principle:

nK
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EH
E

this leads to the famous “Secular equations”, i.e. a set of linear 
equations which in matrix representation is called “generalized 
eigenvalue problem”       

H C = E S C

H S : hamilton and overlap matrix; C: eigenvectors E: eigenvaluesH, S : hamilton and overlap matrix; C: eigenvectors, E: eigenvalues



Basis Sets for Solids

plane waves
pseudo potentials
PAW ( j t t d ) b P E Blö hlPAW (projector augmented wave) by P.E.Blöchl 

space partitioning (augmentation) methods
LMTO (linear muffin tin orbitals)LMTO (linear muffin tin orbitals) 

ASA approx., linearized numerical radial function 
+ Hankel- and Bessel function expansions

full potential LMTOfull-potential LMTO
ASW (augmented spherical wave)

similar to LMTO
KKR (Korringa, Kohn, Rostocker method)

solution of multiple scattering problem, Greens function formalism
equivalent to APWq

(L)APW (linearized augmented plane waves) 
LCAO methods

G i Sl i l bi l f i h PP i )Gaussians, Slater, or numerical orbitals, often with PP option)



pseudopotential plane wave methods

plane waves form a “complete” basis p p
set, however, they “never” converge 
due to the rapid oscillations of the 
t i f ti l t thatomic wave functions χ close to the 

nuclei

´let´s get rid of all core electrons and 
these oscillations by replacing the 
strong ion electron potential by astrong ion–electron potential by a 
much weaker (and physically dubious) 
pseudopotentialp udopo a

Hellmann´s 1935 combined 
approximation methodapproximation method 



“real” potentials vs. pseudopotentials

• “real” potentials contain the Coulomb singularity -Z/r
• the wave function has a cusp and many wiggles, 

h i l b di d d i l th l f th• chemical bonding depends mainly on the overlap of the 
wave functions between neighboring atoms (in the region 
between the nuclei)

Pseudo-ψ

x

between the nuclei) 

t Ψψ

ρ
Veff

Pseudo-ρ

x

x
x

exact Ψ

exact ρexact ρ

Pseudo-potential exact V

rexact form of V only needed beyond rcore rcore



APW based schemes

APW (J.C.Slater 1937)
Non-linear eigenvalue problem

K.Schwarz, P.Blaha, G.K.H.Madsen,
Comp Phys Commun 147 71-76 (2002)Non linear eigenvalue problem

Computationally very demanding

LAPW (O.K.Anderssen 1975)

Comp.Phys.Commun.147, 71-76 (2002)

Generalized eigenvalue problem
Full-potential 

Local orbitals (D.J.Singh 1991)
treatment of semi-core states (avoids ghostbands)

APW l (E Sjö t dt L N d tö D J Si h 2000)APW+lo (E.Sjöstedt, L.Nordstörm, D.J.Singh 2000)
Efficiency of APW + convenience of LAPW
Basis forBasis for

K.Schwarz, 
DFT calculations of solids with LAPW and WIEN2k

Solid State Chem.176, 319-328 (2003)



APW Augmented Plane Wave method

The unit cell is partitioned into:
atomic spheres
Interstitial region

unit cell

Rmt Ir∈ Ir∈

Plane Waves
(PWs)

PWs atomic

PW: rKkie
rrr

).( +
Basis set:

ul(r,ε) are the numerical solutions 

( )

e
Atomic partial waves

∑ ′′K YA )ˆ()(

join
ul( ,ε) a u a o u o
of the radial Schrödinger equation
in a given spherical potential
for a particular energy ε∑ ′′

m
m

K
m rYruA

l
lll )(),( ε

p gy
Alm

K coefficients for matching the PW



Slater‘s APW  (1937)

Atomic partial waves

∑ ′′ m
K
m rYrua lll )ˆ(),( ε

Energy dependent basis functions
lead to a

ml

H Hamiltonian
S overlap matrix lead to a

Non-linear eigenvalue problem
S overlap matrix

Numerical search for those energies, for which 
the det|H-ES| vanishes. Computationally very demanding.| | p y y g

“Exact” solution for given MT potential!



Linearization of energy dependence

LAPW suggested by antibonding

centerO.K.Andersen,
Phys.Rev. B 12, 3060 
(1975) bonding

center

)ˆ()],()(),()([ rYrEukBrEukA mn
m

mnmk n lll
l

llll
&∑ +=Φ

expand ul at fixed energy El and 
add ε∂∂= /ll uu&

Atomic sphere

PW

add

Alm
k, Blm

k: join PWs in 
value and slope LAPW

ε∂∂ /ll uu

PW
General eigenvalue problem 

(diagonalization)
APW

additional constraint requires 
more PWs than APW 



shape approximations to “real” potentials

Atomic sphere approximation (ASA)
overlapping spheres “fill” all volumeoverlapping spheres fill  all volume
potential spherically symmetric

“muffin-tin” approximation (MTA)pp ( )
non-overlapping spheres with spherically
symmetric potential  +
interstitial region with V=const.

“full”-potential
h i ti t Vno shape approximations to V



Full-potential in LAPW (A.Freeman et al)

The potential (and charge density) 
can be of general form 

SrTiO (no shape approximation)SrTiO3

∑ LMLM rYrV )ˆ()( Rr <

Full

∑
LM

LMLM rYrV )()( αRr <

∑
K

rKi
K eV

rr .
Ir∈

=)(rV {
Full
potential

Inside each atomic sphere a
local coordinate system is used

K

Muffin tin

local coordinate system is used 
(defining LM)

approximation

O

TiO2 rutile
Ti



Core, semi-core and valence states

Valences states 
High in energy

For example: Ti
Delocalized wavefunctions 

Semi-core states
Medium energyMedium energy
Principal QN one less than valence 
(e.g. in Ti 3p and 4p)

t l t l fi d i idnot completely confined inside 
sphere 

Core states
Low in energy
Reside inside sphere

31 7 R

-356.6

-31.7 Ry
-38.3 1 Ry =13.605 eV



Local orbitals (LO)

LOs

)ˆ(][ 211 rYuCuBuA m
E

m
E

m
E

mLO lllllll
& ++=Φ

LOs  
are confined to an atomic sphere
have zero value and slope at R
C t t t i i l QNCan treat two principal QN n 
for each azimuthal QN l
( e.g. 3p and 4p) 
Corresponding states are strictly 
orthogonal

(e.g.semi-core and valence)

Ti atomic sphere
( g )

Tail of semi-core states can be 
represented by plane waves
Only slightly increases the basis setOnly slightly increases the basis set
(matrix size)

D J Si hD.J.Singh,
Phys.Rev. B 43 6388 (1991)



An alternative combination of schemes

E.Sjöstedt, L.Nordström, D.J.Singh,
An alternative way of linearizing the augmented plane wave method,
Solid State Commun. 114, 15 (2000)

• Use APW but at fixed E (superior PW convergence)• Use APW, but at fixed El (superior PW convergence)
• Linearize with additional local orbitals (lo)
(add a few extra basis functions)

)ˆ(),()( rYrEukA m
m

nmkn l
l

lll∑=Φ

( )

)ˆ(][ 11 rYuBuA m
E

m
E

mlo lllll
&+=Φ

ml

optimal solution: mixed basis
• use APW+lo for states, which are difficult to converge: 

(f or d- states, atoms with small spheres)
use LAPW+LO for all other atoms and angular momenta• use LAPW+LO for all other atoms and angular momenta



Improved convergence of APW+lo

e.g. force (Fy) on oxygen in SES

vs. # plane waves:
Representative Convergence: 

in LAPW changes sign 
and converges slowly
i APW l bin APW+lo better 
convergence   
to same value as in LAPW 

SES

SES ( di l l d li )SES (sodium electro solodalite)

K.Schwarz, P.Blaha, G.K.H.Madsen,
C Ph C 147 71 76 (2002)Comp.Phys.Commun.147, 71-76 (2002)



Summary: Linearization LAPW vs. APW

Atomic partial waves
LAPW

APW+lo

)ˆ()],()(),()([ rYrEukBrEukA mn
m

mnmnk lll
l

llll &∑ +=Φ

Plane Wa es (PWs)

)ˆ(),()( rYrEukA m
m

nmnk l
l

lll∑=Φ plus another type of local orbital (lo)

Plane Waves (PWs)

rnKkie
rrr

).( +

Atomic sphere

match at sphere boundary
LAPW LAPW

Fe
LAPW
value and slope
APW
value )(kA

)(),( nmnm kBkA ll PW
LAPW

APW
value )( nm kAl



Method implemented in WIEN2k

E.Sjöststedt, L.Nordström, D.J.Singh, SSC 114, 15 (2000)

• Use APW, but at fixed El (superior PW convergence)
• Linearize with additional lo (add a few basis functions)Linearize with additional lo (add a few basis functions)

optimal solution: mixed basis
• use APW+lo for states which are difficult to converge:  
(f- or d- states, atoms with small spheres)

• use LAPW+LO for all other atoms and angular momenta• use LAPW+LO for all other atoms and angular momenta

A summary is given in

K.Schwarz, P.Blaha, G.K.H.Madsen,
Comp Phys Commun 147 71-76 (2002)

A summary is given in

Comp.Phys.Commun.147, 71 76 (2002)
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International users

over 1250 licenses worldwide
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The first publication of the WIEN code



Main developers of WIEN2k

Authors of WIEN2k
P. Blaha, K. Schwarz, D. Kvasnicka, G. Madsen and J. Luitz
Other contributions to WIEN2kOther contributions to WIEN2k

C. Ambrosch (Univ. Leoben, Austria), optics
U. Birkenheuer (Dresden), wave function plotting 
R Dohmen und J Pichlmeier (RZG Garching) parallelizationR. Dohmen und J. Pichlmeier (RZG, Garching), parallelization 
C. Först (Vienna), afminput 
K. Jorrisen (U.Washington) core-level spectra
R Laskowski (Vienna) non-collinear magnetismR. Laskowski (Vienna), non collinear magnetism
L.D. Marks (Northwestern U. , USA) density mixing 
P. Novák and J. Kunes (Prague), LDA+U, SO 
C. Persson (Uppsala), irreducible representationsC. Persson (Uppsala), irreducible representations 
V. Petricek (Prague) 230 space groups  
M. Scheffler (Fritz Haber Inst., Berlin), forces, optimization 
D.J.Singh (NRL, Washington D.C.), local orbitals (LO), APW+lo g ( , g ), ( ),
E. Sjöstedt and L Nordström (Uppsala, Sweden), APW+lo 
J. Sofo and J.Fuhr (Penn State, USA), Bader analysis 
B. Sonalkar (Vienna), non-linear optics ( ) p
B. Yanchitsky and A. Timoshevskii (Kiev), space group 

and many others ….



A series of WIEN workshops were held

1st Vienna April 1995 Wien95
2nd Vienna April 1996
3rd Vienna April 1997 Wien973rd Vienna April 1997 Wien97
4st Trieste, Italy June 1998
5st Vienna April 1999
6th Vienna April 2000p

7th Vienna Sept. 2001 Wien2k
8th Esfahan, Iran April 2002

Penn State USA July 2002Penn State, USA July 2002
9th Vienna April 2003
10th Penn State, USA July 2004
11th Kyoto, Japan May 2005

IPAM, Los Angeles, USA Nov. 2005
12th Vienna April 200612th Vienna April 2006
13th Penn State, USA June 2007
14th Singapore July 2007
15th Vienna March 2008



(L)APW methods

spin polarization
shift of d-bands APW + local orbital method 

   kk
K

k nn

n

C = φ∑Ψ

Lower Hubbard band 
(spin up)

Upper Hubbard band 

(linearized) augmented plane wave method  

pp
(spin down)    kk

K
k nn

n

C= φ∑ΨTotal wave function n…50-100 PWs /atom

0 = 
C

>E<
      

>|<

>|H|<
 = >E<

kδ
δ

ΨΨ

ΨΨ
Variational method:

C| k n

upper bound minimum

Generalized eigenvalue problem:      H C=E S C
Diagonalization of (real or complex) matrices ofDiagonalization of (real or complex) matrices of 
size 10.000 to 50.000 (up to 50 Gb memory)



Structure: a,b,c,α,β,γ, Rα , ...
ll i i i

Structure optimization

unit cell atomic positions
k-mesh in reciprocal space

iteration i

S
k ∈ IBZ (irred.Brillouin zone)

V(ρ) = V +V Poisson DFT

DFT Kohn-ShamS
C
F

( )

kkk EV ψψρ =+−∇ )]([ 2
Kohn Sham

k

Ei+1-Ei < ε

V(ρ) = VC+Vxc Poisson, DFT

no

∑ Φ=
nk

nknkk Cψk

E E < ε

Etot f
yes

no
Variational method 0=><

nkC
E

δ
δ

Generalized eigenvalue problemEtot, force

Minimize E, force→0

g p

ESCHC =

∑ ψψρ *

properties
∑
≤

=
FEkE

kk ψψρ



The Brillouin zone (BZ)

Irreducible BZ (IBZ)
The irreducible wedge 
Region, from which the 
whole BZ can be obtained 
by applying all symmetry 
operations

Bilbao CrystallographicBilbao Crystallographic 
Server:

www.cryst.ehu.es/cryst/
Th IBZ f llThe IBZ of all space groups 
can be obtained from this 
server

h C dusing the option KVEC and 
specifying the space group 
(e.g. No.225 for the fcc 
t t l di t b istructure leading to bcc in 

reciprocal space, No.229 )



Self-consistent field (SCF) calculations

In order to solve HΨ=EΨ we need to know the potential V(r)
for V(r) we need the electron density ρ(r)for V(r) we need the electron density ρ(r) 
the density ρ(r) can be obtained from Ψ(r)*Ψ(r)
?? Ψ(r) is unknown before HΨ=EΨ is solved ???? Ψ(r) is unknown before HΨ=EΨ is solved ??

Start with ρin(r)Start with ρin(r)

SCF cycles

Calculate Veff (r) =f[ρ(r)]Do the mixing of ρ(r)

SCF cycles

Calculate Veff (r) =f[ρ(r)]Do the mixing of ρ(r)

)()()}(1{Solve 2 rrrffV Φ=Φ+∇− ε∑ Φ= iρ 2|)(|)(Compute rr )()()}(1{Solve 2 rrrffV Φ=Φ+∇− ε∑ Φ= iρ 2|)(|)(Compute rr )()()}(
2

{Solve rrr iiieffV Φ=Φ+∇ ε∑
≤ Fi E

i
ε

ρ |)(|)(p )()()}(
2

{Solve rrr iiieffV Φ=Φ+∇ ε∑
≤ Fi E

i
ε

ρ |)(|)(p



Effects of SCF

Band structure of fcc Cu



w2web GUI (graphical user interface)

Structure generator
spacegroup selection
i t if filimport cif file

step by step initialization
symmetry detection
automatic input generation

SCF calculations
Magnetism (spin-polarization)Magnetism (spin polarization)
Spin-orbit coupling
Forces (automatic geometry 
optimization)optimization)

Guided Tasks
Energy band structure
DOSDOS
Electron density
X-ray spectra
O tiOptics



Spacegroup P42/mnm

Structure given by:
spacegroup
lattice parameter
positions of atoms
(basis)(basis)

Rutile TiO2:Rutile TiO2:
P42/mnm (136)
a=8.68, c=5.59 bohr
Ti: (0,0,0)

O: (0 304 0 304 0)

2a

4fO: (0.304,0.304,0) 4f

Ti
O



TiC electron density

NaCl structure  (100) plane
Valence electrons only C
plot in 2 dimensions
Shows 

h di t ib ti

C
Ti

charge distribution
covalent bonding

between the Ti-3d and C-2p 
electrons

eg/t2g symmetry



TiC, three valence states at ∆

Energy bands

Ti 4sTi-4s

C 2
Ti-3d
C-2p

(100) plane

C-2s

( ) p

C 2s

Cp-Tid σ Tid-Tid σ Cp-Tid �

P.Blaha, K.Schwarz,
Int.J.Quantum Chem. 23, 1535 (1983)



Flow Chart of WIEN2k (SCF)
Input ρn-1(r)

lapw0: calculates V(r)lapw0: calculates V(r) 

lapw1: sets up H and S and solves  
the generalized eigenvalue problem 

lapw2: computes thelapw2: computes the 
valence charge density

lcore

converged?
no yes

done!

mixer

converged? done!
WIEN2k: P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz



Workflow of a WIEN2k calculation

• individual FORTRAN programs linked by shell-scripts
• the output of one program is input for the next
• lapw1/2 can run in parallel on many processors

LAPW0SCF cycle

LAPW0

LAPW1

LAPW1

LAPW2

y

ra
ti

on

75 %

3 %*
LAPW1

LAPW2

LCORE
LCORE

SUMPARA

te
ra

ti
on It

e r75 %

20 %

1%

1%MIXER
MIXER

It 1%

selfself
consistent?consistent? ENDyesno

MIXER

selfself
consistent?consistent?END yes no

single mode parallel mode
yes no

k-point parallelizationp p

* fraction of total computation time


