NLO within WIEN2k

9th WIEN Workshop, April 2003

Bernd Olejnik

bernd.olejnik@theochem.tuwien.ac.at

TU Wien

Overview

- Introduction...
- Method...
- Program Modules...
- Examples...

Introduction

NLO within WIEN2k

What is Nonlinear Optic ?

First NLO-Experiment by Franken (1961)

First NLO-Experiment by Franken (1961)

Second Harmonic Generation (SHG)

First NLO-Experiment by Franken (1961)

Second Harmonic Generation (SHG)

- **9** 3 Photon Process: $\omega + \omega \rightarrow 2\omega$
- Only in specific Crystals

NLO within WIEN2k

Which Crystals show SHG?

Which Crystals show SHG?

- Bulk Material with Non Centrosymmetric Structure
- Every Surface is Non Centrosymmetric per Definition
- Typical NLO-Crystals used in Applications, i.e. SHG

Crystal	Formula	Class
BBO	eta -BaB $_2$ O $_4$	3
Lithiumniobat	$LiNbO_3$	33
Quartz	lpha-SiO2	32
KDP	KH_2PO_4	$\overline{4}2m$
Banana	$Ba_2NaNb_5O_{15}$	2mm
KTP	$KTiOPO_4$	2mm

Introduction

What is our Motivation ?

- Highly accurate DFT Program WIEN2k exists
- Understanding SHG on a microscopical scale
 \Rightarrow Additional Package for SHG
- Experiments on the Computer
- Optimizing Crystals for SHG

Source of the Nonlinearity

Interaction between Light and Matter

- Interaction between Light and Matter
- Incident Light \Rightarrow Polarization of Media

- Interaction between Light and Matter
- Incident Light \Rightarrow Polarization of Media
- Characteristic Curve connects Polarization and driving Field

- Interaction between Light and Matter
- Incident Light \Rightarrow Polarization of Media
- Characteristic Curve connects Polarization and driving Field

- Interaction between Light and Matter
- Incident Light \Rightarrow Polarization of Media
- Characteristic Curve connects Polarization and driving Field

Our Approach

Our Approach

Expansion into a Power Series

$$P^{a} = \underbrace{\sum_{b} \chi_{I}^{ab} E^{b}}_{LO} + \underbrace{\sum_{b} \sum_{c} \chi_{II}^{abc} E^{b} E^{c} + \cdots}_{NLO}$$

Our Approach

Expansion into a Power Series

$$P^{a} = \underbrace{\sum_{b} \chi_{I}^{ab} E^{b}}_{LO} + \underbrace{\sum_{b} \sum_{c} \chi_{II}^{abc} E^{b} E^{c} + \cdots}_{NLO}$$

 Perturbation Theory in Density Formalism (PRB 48, 11705 (1993))

Our Approach

Expansion into a Power Series

$$P^{a} = \underbrace{\sum_{b} \chi_{I}^{ab} E^{b}}_{LO} + \underbrace{\sum_{b} \sum_{c} \chi_{II}^{abc} E^{b} E^{c} + \cdots}_{NLO}$$

- Perturbation Theory in Density Formalism (PRB 48, 11705 (1993))
 - Formalism works only for Filled Bands

Our Approach

Expansion into a Power Series

$$P^{a} = \underbrace{\sum_{b} \chi_{I}^{ab} E^{b}}_{LO} + \underbrace{\sum_{b} \sum_{c} \chi_{II}^{abc} E^{b} E^{c} + \cdots}_{NLO}$$

- Perturbation Theory in Density Formalism (PRB 48, 11705 (1993))
 - Formalism works only for Filled Bands
 - Separate Susceptibility into several Parts

$$\chi_{II}^{abc}(-2\omega;\omega,\omega) = \underbrace{\chi_{ter}^{abc}(-2\omega;\omega,\omega)}_{interband} + \underbrace{\chi_{tra}^{abc}(-2\omega;\omega,\omega)}_{intraband}$$

NLO within WIEN2k

Method

Our Approach

$$P^{a} = \underbrace{\sum_{b} \chi_{I}^{ab} E^{b}}_{LO} + \underbrace{\sum_{b} \sum_{c} \chi_{II}^{abc} E^{b} E^{c} + \cdots}_{NLO}$$

- Perturbation Theory in Density Formalism (PRB 48, 11705 (1993))
 - Formalism works only for Filled Bands
 - Separate Susceptibility into several Parts

$$\chi_{II}^{abc}(-2\omega;\omega,\omega) = \underbrace{\chi_{ter}^{abc}(-2\omega;\omega,\omega)}_{interband} + \underbrace{\chi_{tra}^{abc}(-2\omega;\omega,\omega)}_{intraband}$$

$$\chi_{ter}^{abc}(-2\omega;\omega,\omega) = \frac{e^3}{8\pi^3\hbar^2} \int_{\text{FBZ}} d^3k \sum_{nml} \frac{r_{nm}^a(r_{ml}^b r_{ln}^c + r_{ml}^c r_{ln}^b)}{\omega_{ln} - \omega_{ml}} \\ \times \left[\frac{2f_{nm}}{\omega_{mn} - 2\omega} + \frac{f_{ln}}{\omega_{ln} - \omega} + \frac{f_{ml}}{\omega_{ml} - \omega} \right]$$

$$\chi_{ter}^{abc}(-2\omega;\omega,\omega) = \frac{e^3}{8\pi^3\hbar^2} \int_{\text{FBZ}} d^3k \sum_{nml} \frac{r_{nm}^a(r_{ml}^b r_{ln}^c + r_{ml}^c r_{ln}^b)}{\omega_{ln} - \omega_{ml}} \times \left[\frac{2f_{nm}}{\omega_{mn} - 2\omega} + \frac{f_{ln}}{\omega_{ln} - \omega} + \frac{f_{ml}}{\omega_{ml} - \omega} \right]$$

Contribution of the purely interband Processes

$$\begin{split} \chi^{abc}_{ter}(-2\omega;\omega,\omega) &= \frac{e^3}{8\pi^3\hbar^2} \int_{\text{FBZ}} d^3k \, \sum_{nml} \frac{r^a_{nm}(r^b_{ml}r^c_{ln} + r^c_{ml}r^b_{ln})}{\omega_{ln} - \omega_{ml}} \\ &\times \left[\frac{2f_{nm}}{\omega_{mn} - 2\omega} + \frac{f_{ln}}{\omega_{ln} - \omega} + \frac{f_{ml}}{\omega_{ml} - \omega} \right] \end{split}$$

- Contribution of the purely interband Processes
- Integration over the Full Brillouin Zone (FBZ)

$$\chi_{ter}^{abc}(-2\omega;\omega,\omega) = \frac{e^3}{8\pi^3\hbar^2} \int_{\text{FBZ}} d^3k \sum_{nml} \frac{r_{nm}^a(r_{ml}^b r_{ln}^c + r_{ml}^c r_{ln}^b)}{\omega_{ln} - \omega_{ml}} \\ \times \left[\frac{2f_{nm}}{\omega_{mn} - 2\omega} + \frac{f_{ln}}{\omega_{ln} - \omega} + \frac{f_{ml}}{\omega_{ml} - \omega} \right]$$

- Contribution of the purely interband Processes
- Integration over the Full Brillouin Zone (FBZ)
- \checkmark r^a_{nm} and ω_{mn} are k-Point dependent

$$\chi_{ter}^{abc}(-2\omega;\omega,\omega) = \frac{e^3}{8\pi^3\hbar^2} \int_{\text{FBZ}} d^3k \sum_{nml} \frac{r_{nm}^a(r_{ml}^b r_{ln}^c + r_{ml}^c r_{ln}^b)}{\omega_{ln} - \omega_{ml}} \\ \times \left[\frac{2f_{nm}}{\omega_{mn} - 2\omega} + \frac{f_{ln}}{\omega_{ln} - \omega} + \frac{f_{ml}}{\omega_{ml} - \omega} \right]$$

- Contribution of the purely interband Processes
- Integration over the Full Brillouin Zone (FBZ)
- $\bullet r^a_{nm}$ and ω_{mn} are k-Point dependent
- Only one Divergence is remaining

$$\chi_{ter}^{abc}(-2\omega;\omega,\omega) = \frac{e^3}{8\pi^3\hbar^2} \int_{\text{FBZ}} d^3k \sum_{nml} \frac{r_{nm}^a(r_{ml}^b r_{ln}^c + r_{ml}^c r_{ln}^b)}{\omega_{ln} - \omega_{ml}} \times \left[\frac{2f_{nm}}{\omega_{mn} - 2\omega} + \frac{f_{ln}}{\omega_{ln} - \omega} + \frac{f_{ml}}{\omega_{ml} - \omega} \right]$$

- Contribution of the purely interband Processes
- Integration over the Full Brillouin Zone (FBZ)
- \bullet r^a_{nm} and ω_{mn} are k-Point dependent
- Only one Divergence is remaining

 \Rightarrow Double Resonance (DR)

$$\chi_{ter}^{abc}(-2\omega;\omega,\omega) = \frac{e^3}{8\pi^3\hbar^2} \int_{\text{FBZ}} d^3k \sum_{nml} \frac{r_{nm}^a(r_{ml}^b r_{ln}^c + r_{ml}^c r_{ln}^b)}{\omega_{ln} - \omega_{ml}} \times \left[\frac{2f_{nm}}{\omega_{mn} - 2\omega} + \frac{f_{ln}}{\omega_{ln} - \omega} + \frac{f_{ml}}{\omega_{ml} - \omega} \right]$$

- Contribution of the purely interband Processes
- Integration over the Full Brillouin Zone (FBZ)
- r_{nm}^a and ω_{mn} are k-Point dependent
- Only one Divergence is remaining

 \Rightarrow Double Resonance (DR)

$$\begin{split} \chi^{abc}_{tra}(-2\omega;\omega,\omega) &= i \frac{e^3}{8\pi^3\hbar^2} \int_{\text{FBZ}} d^3k \sum_{nm} f_{nm} \Big[\frac{2r^a_{nm}(r^b_{mn;c} + r^c_{mn;b})}{\omega_{mn}(\omega_{mn} - 2\omega)} \\ &+ \frac{(r^a_{nm;c}r^b_{mn} + r^a_{nm;b}r^c_{mn})}{\omega_{mn}(\omega_{mn} - \omega)} - \frac{(r^b_{nm;a}r^c_{mn} + r^c_{nm;a}r^b_{mn})}{2\omega_{mn}(\omega_{mn} - \omega)} \\ &+ \left(\frac{1}{\omega_{mn} - \omega} - \frac{4}{\omega_{mn} - 2\omega} \right) \frac{r^a_{nm}}{\omega^2_{mn}} (r^b_{mn}\Delta^c_{mn} + r^c_{mn}\Delta^b_{mn}) \Big] \end{split}$$

$$\begin{split} \chi_{tra}^{abc}(-2\omega;\omega,\omega) &= i \frac{e^{3}}{8\pi^{3}\hbar^{2}} \int_{\text{FBZ}} d^{3}k \sum_{nm} f_{nm} \Big[\frac{2r_{nm}^{a}(r_{mn;c}^{b} + r_{mn;b}^{c})}{\omega_{mn}(\omega_{mn} - 2\omega)} \\ &+ \frac{(r_{nm;c}^{a}r_{mn}^{b} + r_{nm;b}^{a}r_{mn}^{c})}{\omega_{mn}(\omega_{mn} - \omega)} - \frac{(r_{nm;a}^{b}r_{mn}^{c} + r_{nm;a}^{c}r_{mn}^{b})}{2\omega_{mn}(\omega_{mn} - \omega)} \\ &+ \left(\frac{1}{\omega_{mn} - \omega} - \frac{4}{\omega_{mn} - 2\omega} \right) \frac{r_{nm}^{a}}{\omega_{mn}^{2}} (r_{mn}^{b}\Delta_{mn}^{c} + r_{mn}^{c}\Delta_{mn}^{b}) \Big] \end{split}$$

Contribution of the mixed interband and intraband Processes

$$\chi_{tra}^{abc}(-2\omega;\omega,\omega) = i \frac{e^3}{8\pi^3\hbar^2} \int_{\text{FBZ}} d^3k \sum_{nm} f_{nm} \left[\frac{2r_{nm}^a(r_{mn;c}^b + r_{mn;b}^c)}{\omega_{mn}(\omega_{mn} - 2\omega)} + \frac{(r_{nm;c}^a r_{mn}^b + r_{nm;b}^a r_{mn}^c)}{\omega_{mn}(\omega_{mn} - \omega)} - \frac{(r_{nm;a}^b r_{mn}^c + r_{nm;a}^c r_{mn}^b)}{2\omega_{mn}(\omega_{mn} - \omega)} + \left(\frac{1}{\omega_{mn} - \omega} - \frac{4}{\omega_{mn} - 2\omega} \right) \frac{r_{nm}^a}{\omega_{mn}^2} (r_{mn}^b \Delta_{mn}^c + r_{mn}^c \Delta_{mn}^b) \right]$$

- Contribution of the mixed interband and intraband Processes
 - Modulation of the linear Response by the intraband Motion

$$\chi_{tra}^{abc}(-2\omega;\omega,\omega) = i \frac{e^{3}}{8\pi^{3}\hbar^{2}} \int_{\text{FBZ}} d^{3}k \sum_{nm} f_{nm} \left[\frac{2r_{nm}^{a}(r_{mn;c}^{b} + r_{mn;b}^{c})}{\omega_{mn}(\omega_{mn} - 2\omega)} + \frac{(r_{nm;c}^{a}r_{mn}^{b} + r_{nm;b}^{a}r_{mn}^{c})}{\omega_{mn}(\omega_{mn} - \omega)} - \frac{(r_{nm;a}^{b}r_{mn}^{c} + r_{nm;a}^{c}r_{mn}^{b})}{2\omega_{mn}(\omega_{mn} - \omega)} + \left(\frac{1}{\omega_{mn} - \omega} - \frac{4}{\omega_{mn} - 2\omega} \right) \frac{r_{nm}^{a}}{\omega_{mn}^{2}} (r_{mn}^{b}\Delta_{mn}^{c} + r_{mn}^{c}\Delta_{mn}^{b}) \right]$$

- Contribution of the mixed interband and intraband Processes
 - Modulation of the linear Response by the intraband Motion
 - Modification of the intraband Motion by the interband Polarization

$$\chi_{tra}^{abc}(-2\omega;\omega,\omega) = i \frac{e^3}{8\pi^3\hbar^2} \int_{\text{FBZ}} d^3k \sum_{nm} f_{nm} \left[\frac{2r_{nm}^a(r_{mn;c}^b + r_{mn;b}^c)}{\omega_{mn}(\omega_{mn} - 2\omega)} + \frac{(r_{nm;c}^a r_{mn}^b + r_{nm;b}^a r_{mn}^c)}{\omega_{mn}(\omega_{mn} - \omega)} - \frac{(r_{nm;a}^b r_{mn}^c + r_{nm;a}^c r_{mn}^b)}{2\omega_{mn}(\omega_{mn} - \omega)} + \left(\frac{1}{\omega_{mn} - \omega} - \frac{4}{\omega_{mn} - 2\omega} \right) \frac{r_{nm}^a}{\omega_{mn}^2} (r_{mn}^b \Delta_{mn}^c + r_{mn}^c \Delta_{mn}^b) \right]$$

- Contribution of the mixed interband and intraband Processes
 - Modulation of the linear Response by the intraband Motion
 - Modification of the intraband Motion by the interband Polarization
- \checkmark $r^a_{nm;b}$ and Δ^b_{mn} are k-Point dependent

$$\chi_{tra}^{abc}(-2\omega;\omega,\omega) = i \frac{e^3}{8\pi^3\hbar^2} \int_{\text{FBZ}} d^3k \sum_{nm} f_{nm} \left[\frac{2r_{nm}^a(r_{mn;c}^b + r_{mn;b}^c)}{\omega_{mn}(\omega_{mn} - 2\omega)} + \frac{(r_{nm;c}^a r_{mn}^b + r_{nm;b}^a r_{mn}^c)}{\omega_{mn}(\omega_{mn} - \omega)} - \frac{(r_{nm;a}^b r_{mn}^c + r_{nm;a}^c r_{mn}^b)}{2\omega_{mn}(\omega_{mn} - \omega)} + \left(\frac{1}{\omega_{mn} - \omega} - \frac{4}{\omega_{mn} - 2\omega} \right) \frac{r_{nm}^a}{\omega_{mn}^2} (r_{mn}^b \Delta_{mn}^c + r_{mn}^c \Delta_{mn}^b) \right]$$

- Contribution of the mixed interband and intraband Processes
 - Modulation of the linear Response by the intraband Motion
 - Modification of the intraband Motion by the interband Polarization
- \checkmark $r^a_{nm;b}$ and Δ^b_{mn} are k-Point dependent
- No Divergences are remaining

Algorithm
Starting with the Momentum Matrix Elements (MME)

- Starting with the Momentum Matrix Elements (MME)
- Evaluate the Integrands

- Starting with the Momentum Matrix Elements (MME)
- Evaluate the Integrands
- Integrate over the Energy Surface
 - \Rightarrow Imaginary Part of Susceptibility

- Starting with the Momentum Matrix Elements (MME)
- Evaluate the Integrands
- Integrate over the Energy Surface
 - \Rightarrow Imaginary Part of Susceptibility
- Apply the Kramers Kronig Relation ⇒ Real Part of Susceptibility

NLO within WIEN2k

Scissor Correction in SHG

Scissor Correction in SHG

Correction to the Band Gap Problem in DFT

Scissor Correction in SHG

- Correction to the Band Gap Problem in DFT
- Lift the unoccupied Bands by a constant Energy

Scissor Correction in SHG

- Correction to the Band Gap Problem in DFT
- Lift the unoccupied Bands by a constant Energy
- Linear Response (LR)
 - Shift the Spectrum

 \Rightarrow Absorption starts at Band Gap Energy

Scissor Correction in SHG

- Correction to the Band Gap Problem in DFT
- Lift the unoccupied Bands by a constant Energy
- Linear Response (LR)
 - Shift the Spectrum

 \Rightarrow Absorption starts at Band Gap Energy

- SHG
 - Shift and Scale the Spectrum

 \Rightarrow Starts at half Band Gap Energy

Close Connection to DR

Scissor Correction in SHG

NLO within WIEN2k

Band Structure GaAs

No Scissor Correction, GGA

NLO within WIEN2k

Band Structure GaAs

No Scissor Correction, GGA

 \Rightarrow GGA Band Gap 0.51 eV

NLO within WIEN2k

- No Scissor Correction, GGA \Rightarrow GGA Band Gap 0.51 eV
- With Scissor Correction 1.01 eV
 \Rightarrow corrected Band Gap 1.52 eV

NLO within WIEN2k

- No Scissor Correction, GGA \Rightarrow GGA Band Gap 0.51 eV
- With Scissor Correction 1.01 eV
 \Rightarrow corrected Band Gap 1.52 eV
- Double Resonances at

NLO within WIEN2k

- No Scissor Correction, GGA \Rightarrow GGA Band Gap 0.51 eV
- With Scissor Correction 1.01 eV
 \Rightarrow corrected Band Gap 1.52 eV
- Double Resonances at
 - 2.1-2.6 eV

NLO within WIEN2k

- No Scissor Correction, GGA \Rightarrow GGA Band Gap 0.51 eV
- With Scissor Correction 1.01 eV
 \Rightarrow corrected Band Gap 1.52 eV
- Double Resonances at
 - 2.1-2.6 eV
 - 3.2-3.7 eV

NLO within WIEN2k

Band Structure GaAs

- No Scissor Correction, GGA \Rightarrow GGA Band Gap 0.51 eV
- With Scissor Correction 1.01 eV
 \Rightarrow corrected Band Gap 1.52 eV
- Double Resonances at
 - 2.1-2.6 eV
 - 3.2-3.7 eV

Note: This is only a 1d-Picture !

Program Flow

- Similar to the LO-Package
- Complex Program Version

Program Flow

- Similar to the LO-Package
- Complex Program Version

Starting Point

- Well Converged Potential
- Increase Number of k-Points
- Generate Eigenvectors and Eigenvalues
- Calculates the Fermi Energy

Program Modules

Module: opticc

- Compute MMEs
 - For each Band-Combination
 - For every k-Point
- Additional Working Mode
 - Output of pure MMEs
 - Output Symmetry Matrices

Program Modules

Module: nlo_core

- Evaluate the Integrands
- Object Oriented Structure $\Rightarrow easy add-on formulas$
- Different Formulas Implemented:
 - SHG57 (PRB **57**, 3905 (1998))
 - SHG53 (PRB **53**, 10751 (1996))
 - OR61 (PRB 61, 5337 (2000))
- Divergence Cutoff Parameter
- Scissor Correction

NLO within WIEN2k

Module: nlo_tet

- Calculate the Imaginary Part of the Susceptibility by Integration
- Linearized Tetrahedron Method
- Independent from nlo_core
- Skip Tetrahedrons
- Interface to gnuplot

NLO within WIEN2k

Module: nlo_KK

- Computes the Real Part of the Susceptibility with Kramers Kronig
- Integration by using Broadening
- Filter-Kernels
 - Lorentz
 - Gaussian
- Interface to gnuplot

Examples

Examples

Exp. Data (PRB 14, 1693 (1976))

Static SHG

- Susceptibility at Zero Frequency $\chi_{II}(0)$
- Non Sensitive to the k-Point Density...
- Good Matches with Experiments (in [pm/V])

Method	GaP	GaAs
LDA	165.4	857.3
LDA + scissors	78.7	176.9
GGA	142.6	521.5
GGA + scissors	75.6	167.4
Experiment*	74 ± 4	162 ± 10

* Exp. Data (PRL **20**, 272 (1972))

Static SHG

- Susceptibility at Zero Frequency $\chi_{II}(0)$
- Non Sensitive to the k-Point Density...
- Good Matches with Experiments (in [pm/V])

Method	GaP	GaAs
LDA	165.4	857.3
LDA + scissors	78.7	176.9
GGA	142.6	521.5
GGA + scissors	75.6	167.4
Experiment*	74 ± 4	162 ± 10

* Exp. Data (PRL **20**, 272 (1972))

Key Points in a NLO-Calculation

- Number of k-Points
- Upper Energy Limit in nlo_tet...
- Number of Conduction Bands
- Fine Tuning to Minimize the Effect of the DR
 - Density of the k-Mesh
 - Scissor Parameter
 - Divergence Cutoff Parameter
- Analysis of the remaining DR

Summery

- Bulk Materials
- Insulators and clean Semiconductors
- Separation into Inter- and Intraband Contribution
- Proper SHG in the Zero Frequency Limit
- Susceptibility shows correct Behavior at low Energies
- Results from the Literature reproducible
- No Metals
- Double Resonances

To Do

- Band Analysis Mode
- Sum Rule Checks (PRB 51, 6925 (1995))
- Second Divergence Cutoff Parameter
 ⇒ Controlling DR
- Additional Formulas in nlo_core
 - Static Limit $\chi_{II}(0)$
 - Third Harmonic Generation (THG), ...

Thank You !

GaAs

cubic GaAs FBZ: 200000 scissor: S 0.092 Ryd cutoff: R 0.002 Ryd

Examples

GaP

Scissor Correction

cubic GaP FBZ: *50000* cutoff: *R* 0.002 *Ryd*

Scissor Correction

k-Point Dependency...

k-Point Dependency...

Energy Range and Kramers Kronig I...

cubic GaAs scissor: *S* 0.092 *Ryd* cutoff: *R* 0.002 *Ryd*

Energy Range and Kramers Kronig II...

Examples

Exp. Data (PRB **14**, 1693 (1976))

Examples

Exp. Data (PRL 15, 415 (1965)) and (PRB 11, 3867 (1975))

