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Dirac Hamiltonian

Spin as a dynamical variable is of great importance in
magnetism. Thus we start with Dirac Hamiltonian.

HD = c~α · ~p + βmc2 + V
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Dirac Hamiltonian

HD = c ~α · ~p+ βmc2 + V

~α is 3-component vector
of 4x4 matrixes:

αk =





0 σk

σk 0





Pauli matrixes:

σ1 =
0 1

1 0
σ2 =

0 −i

i 0

σ3 =
1 0

0 −1
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Dirac Hamiltonian

HD = c~α · ~p+ β mc2 + V

β is 4x4 matrix: β =





1 0

0 −1



 1 =





1 0

0 1





m - is electron mass, c - speed of the light
p - momentum operator
V - efective potential, which is related to density (DFT)
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Dirac equation

HD = c~α · ~p+ βmc2 + V

large

component

HD















ψ1

ψ2

ψ3

ψ4















= ε















ψ1

ψ2

ψ3

ψ4















small

component

Dirac equation

Hamiltonian is 4x4 matrix operator

wave function is 4 component vector

neglecting contribution of small component to the charge density, one
can derive 2x2 Pauli like Hamiltonian
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Pauli Hamiltonian

HP = −
~

2

2m
∇2

+ Veff + µB~σ · ~Beff + ζ ·
(

~σ ·~l
)

+ . . .

Hamiltonian is 2x2 matrix operator

wave function is 2 component vector

spin up

component HP





ψ1
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 = ε





ψ1

ψ2





spin down

component
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Pauli Hamiltonian

HP = −
~

2

2m
∇2

+ Veff + µB~σ · ~Beff + ζ ·
(

~σ ·~l
)

+ . . .

effective electrostatic
potential

effective magnetic
field

spin-(orbit)
interaction term

Veff = Vext + VH+ ~Beff = ~Bext+
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Pauli Hamiltonian

HP = −
~

2

2m
∇2

+ Veff + µB~σ · ~Beff + ζ ·
(

~σ ·~l
)

+ . . .

effective electrostatic
potential

effective magnetic
field

spin-(orbit)
interaction term

Veff = Vext + VH + Vxc ~Beff = ~Bext +
~Bxc

quite important and difficult to define, describe
many body effects
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Exchange potential and field

In DFT Vxc and ~Bxc are defined by:

Vxc =
∂Exc (n, ~m)

∂n
, ~Bxc =

∂Exc (n, ~m)

∂ ~m

In local density approximation (LDA):

Exc (n, ~m) =

∫

nεxc (n,m) dr3

what results in:

Vxc = εxc (n,m)+n
∂εxc (n,m)

∂n
, ~Bxc = n

∂εxc (n,m)

∂m
m̂

~Bxc = n
∂εxc(n,m)

∂m
m̂

exchange field is parallel to local magnetisation
density vector
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Non-collinear case

HP = −
~

2

2m
∇2 + Veff + µB~σ · ~Beff + ζ ·

(

~σ ·~l
)

+ . . .

If we take everything, and also allow magnetisation to vary its direction
from point to point, we will end up with 2x2 Hamiltonian:

�
�

−

�

2

2m
∇2 + Veff + µB~σ · ~Bz + . . . µB (Bx − iBy) + . . .

µB (Bx + iBy) + . . . −

�2

2m
∇2 + Veff − µB~σ · ~Bz + . . .

�
� ϕ = εϕ

solutions are non-pure spinors

ϕ =





ψ↑

ψ↓



 , ψ↑, ψ↓ 6= 0
this is non-collinearity
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Collinear case

HP = −
~

2

2m
∇2 + Veff + µB~σ · ~Beff + ζ ·

(

~σ ·~l
)

+ . . .

If we ignore only spin-orbit term, and allow magnetisation to point in one
direction (z), resulting Hamiltonian will be diagonal in spin-space.

�
�

−

�2

2m
∇2 + Veff + µB~σ · ~Bz 0

0 −

�

2

2m
∇2 + Veff − µB~σ · ~Bz

�
� ϕ = εϕ

ϕ↑ =





ψ↑

0



 , ϕ↓ =





0

ψ↓





ε↑ 6= ε↓

solutions are pure spinors

with non-degenerate
energies

collinear magnetism
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Non-magnetic case

HP = −
~

2

2m
∇2 + Veff + µB~σ · ~Beff + ζ ·

(

~σ ·~l
)

+ . . .

If we ignore spin-orbit term and magnetic exchange field, resulting
Hamiltonian will be diagonal in spin-space.

�
�

−

�2

2m
∇2 + Veff 0

0 −

�

2

2m
∇2 + Veff

�
� ϕ = εϕ

ϕ↑ =





ψ

0



 , ϕ↓ =





0

ψ





ε↑ = ε↓

solutions are pure spinors

with degenerate energies

non-magnetic solution
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Consequences

Implementation of non-collinearity means that we allow both
part of the eigen-spinor (ψ↑, ψ↓) to be non zero at the same
time. As a result:

we have to deal with 2x2 Hamiltonian, instead of 1x1 as
in collinear cases

this means that diagonalisation is 4 times more expensive

this is usually much more because of losing symmetry
operations
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Implementations of NCM in LAPW

ψ↑, ψ↓ can be non-zero only when basis allows for that.

L. Nordström and D. J. Singh Phys. Rev. Lett. 76, 4420 (1996).

pure spinor non polarised basis, given in one global spin

coordinate frame,

basis must be supplemented by additional local orbitals,

magnetisation is a continuous field.
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Implementations of NCM in LAPW

Ph. Kurz at al. Phys. Rev. B 63, 96401 (2001),

interstitial region and each atomic sphere have their own

quantisation axis,

quantisation axis of a sphere is supposed to point in a

direction of average magnetisation,

basis functions are pure spinor in interstitial region,

inside spheres non-pure spinors but polarised,

atomic moment approximation (AMA).

This is implemented in WIEN2k
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Spin coordinate sets

α

α 1

2

interstices: ϕ~Gσ
= ei(~G+~k)·~rχσ, where χσ =





1

0



, or





0

1
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Basis functions

spheres - combination of pure spinors in a local coordinate frame:

the direction of the quantisation axis is along an average
magnetisation inside the sphere,

α

α 1

2

ϕAPW
~Gσ

(

~k
)

=
∑

σα

∑

L

(

A
~Gσσα

L uσα

l +B
~Gσσα

L u̇σα

l

)

YLχσα ,

ϕLO
~Gσα

=
(

A
~Gσα

L uσα

l +B
~Gσσα

L u̇σα

l + C
~Gσα

L uσα

2,l

)

YLχσα

YL is a spherical harmonic, L stands for (l,m),
χσα is a spinor given in a local coordinate frame,
u, u̇ are radial function and its energy derivative.

wien workshop 2003 – p.18/40



Basis functions

spheres - combination of pure spinors in a local coordinate frame:

the direction of the quantisation axis is along an average
magnetisation inside the sphere,

ϕAPW
~Gσ

(

~k
)

=
∑

σα

∑

L

(

A
~Gσσα

L uσα

l +B
~Gσσα

L u̇σα

l

)

YLχσα ,

ϕLO
~Gσα

=
(

A
~Gσα

L uσα

l +B
~Gσσα

L u̇σα

l + C
~Gσα

L uσα

2,l

)

YLχσα

YL is a spherical harmonic, L stands for (l,m),
χσα is a spinor given in a local coordinate frame,
u, u̇ are radial function and its energy derivative.

wien workshop 2003 – p.18/40



Augmentation (...)

ϕAPW
~Gσ

(

~k
)

=
∑

σα

∑

L

(

A
~Gσσα

L uσα

l +B
~Gσσα

L u̇σα

l

)

YLχσα ,

ϕLO
~Gσα

=
(

A
~Gσα

L uσα

l +B
~Gσσα

L u̇σα

l + C
~Gσα

L uσα

2,l

)

YLχσα

AL, BL, CL are calculated from sphere boundary conditions.

for APW/LAPW matching is done to ↑ and ↓ plane waves in a
global spin coordinate frame. Thus AL, BL depend on global σ
and local σα spin indexes, and on k-point.

LO has to vanish at a sphere boundary. It is a pure spinor in a
local coordinate frame (AL, BL, CL depend only on σα).

for APW type of basis B = 0 in PW and LO, and additional local
orbital “lo” is introduced with C = 0, and B 6= 0.
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Hamiltonian (...)

In the interstitial region we don’t have spin-orbit,
Hamiltonian is a sum of only kinetic energy and effective potentials:

Ĥ = −
~

2

2m
∇2 + V̂ ,

where V̂ combines Veff and Beff in a form of 2x2 potential matrix.

In the spheres w can have everything
Thus, Hamiltonian is more complicated:

Ĥ = −
~

2

2m
∇2 + V̂ + Ĥso + Ĥorb + Ĥc

As a result, there are same choices:

wien workshop 2003 – p.20/40



Hamiltonian (...)

In the interstitial region we don’t have spin-orbit,
Hamiltonian is a sum of only kinetic energy and effective potentials:
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Hamiltonian - spheres (...)

inside sphere potential matrix: V̂ = V̂ d + V̂ off .

AMA mode (atomic moment approximation) V̂ off is ignored.

V̂ =





V↑↑ 0

0 V↓↓





FULL mode (non-collinearity inside spheres)

V̂ =





V↑↑ 0

0 V↓↓



 +





0 V↑↓

V↓↑ 0
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Hamiltonian - spheres (...)

SO (spin-orbit coupling) -

Ĥso = ξ~σ ·~l = ξ

�
�

l̂z σx − il̂y

l̂x + il̂y −l̂z
�

� ,

ORB (lda+U) -

Ĥorb =

m,m′

|m〉 v↑
mm′

〈m′| 0

0 |m〉 v↓
mm′

〈m′|
,

constrain field ( ~Bc ⊥ ẑα) -

Ĥc = µB
~Bc · ~σ =

0 µB (Bc,x − iBc,y)

µB (Bc,x + iBc,y) 0
.
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Ĥorb =

m,m′

�
�

|m〉 v↑
mm′

〈m′| 0

0 |m〉 v↓
mm′

〈m′|

�
� ,

constrain field ( ~Bc ⊥ ẑα) -

Ĥc = µB
~Bc · ~σ =

�
�

0 µB (Bc,x − iBc,y)

µB (Bc,x + iBc,y) 0

�
� .

Ĥc = µB
~Bc · ~σ =

0 µB (Bc,x − iBc,y)

µB (Bc,x + iBc,y) 0
.
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�
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Allocation of the Hamiltonian and overlap matrixes (...)

APW up

LO up

APW down

LO down

Matrix elements
(integrals):

H~G, ~G′ =
〈

ψ~G

∣

∣

∣
Ĥ

∣

∣

∣
φ ~G′

〉

,

S~G, ~G′ =
〈

ψ~G
| φ ~G′

〉

,

where ψ and φ can be
APW or LO, ↑ or ↓
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Allocation of the Hamiltonian and overlap matrixes (...)

APW up

LO up

APW down

LO down

collinear setup
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Spin-spirals

spin-spiral is defined by a vector ~q given in reciprocal space and an
angle υ between magnetic moment and rotation axis,

lattice translation (R)

spin rotation (α)

α = ~R · ~q

~mn = ~m
(

cos
(

~q · ~Rn
)

sin υ, sin
(

~q · ~Rn
)

sin υ, cos υ
)

the direction of the rotation axis is arbitrary.
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Spin-spirals

pure translations are obviously not symmetry operations of H,

H
(

~r + ~Rn
)

6= H (~r) ,

translations coupled with spin space rotations Tn =
{

−~q · ~Rn |ε| ~Rn
}

are symmetry operations of H;

Tn
†H (~r)Tn = U †

(

−~q · ~Rn
)

H
(

~r + ~Rn
)

U
(

−~q · ~Rn
)

,

Group of Tn is Abelian, thus it has one dimensional representations,

Tnψk (r) = U (−q ·Rn)ψk (r + Rn) = eik·Rn

ψk (r) .

Bloch theorem!!!
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Spin-spirals

Wave function of a spiral structure is of the form:

ψk (r) = eik·r





e
−iq·r

2 u
↑
k (r)

e
iq·r

2 u
↓
k (r)



 ,

where uσ (r) has translational periodicity.

↑ part of a spinor transform with k − q
2
, ↓ part of a spinor transform

with k + q
2
. The basis has to be composed using condition:

∣

∣

∣
G + k±

q

2

∣

∣

∣
≤ Gmax,

with “−” for ↑, and “+” for ↓. This can generate different numbers of
basis functions for ↑ and ↓ spins.
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Intra-atomic NCM, fcc Pu

(a) plane x = 0 (b) plane z = 1/10

Spin density maps of fcc Pu. Calculation in FULL mode with SO. Average momenta point to
〈001〉
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Intra-atomic NCM, bcc U

(c) plane x = 1/2 (d) plane z = 6/10

Spin density maps of bcc U (unit cell size 9 a.u.). Calculation in FULL mode with SO.
Average momenta point to 〈001〉
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γ Fe, spin spiral

Γ X
q

-0,004

-0,003

-0,002

-0,001

0
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ta
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ne
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y 

[R
y]

AMA
FULL

Γ X
q

1,3

1,4

1,5

1,6

1,7

1,8
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l s
pi

n 
m
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en

t [
µ B

] AMA
FULL

Local spin moment and total energy versus spin-spiral ~q vector.
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γ Fe, spin spiral

AMA

FULL

Spin density maps for q = 0.6 (0-Γ, 1-X)
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Magnetic structure of Mn3Sn

Chemical structure of Mn3Sn

fm afm ncm 1

ncm 2 ncm 3 ncm 4
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Magnetic structure of Mn3Sn

fm afm ncm 1

ncm 2 ncm 3 ncm 4
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Magnetic structure of Mn3Sn

so fm afm ncm 1 ncm 2 ncm 3 ncm 4

Efm − E [Ry] - 0.0 0.0131 0.0444 0.0444 0.0444 0.0444

+ 0.0 0.0133 0.0441 0.0439 0.0444 0.0445

Ms [µB ] - 3.012 2.684 3.037 3.037 3.037 3.037

+ 3.008 2.679 3.034 3.034 3.038 3.037

efg on Mn - -1.657 -2.111 -0.894 -0.894 -0.894 -0.894

[1021V/m2] + -1.661 -2.119 -0.892 -0.899 -0.891 -0.894

-0.898 -0.881

hff on Mn - -309.9 -153.1 31.2 31.2 31.2 31.2

[kGauss] + -309.6 -152.9 31.1 31.5 31.5 30.9

32.2 32.1

in non-so case all ncm structures are symmetry equivalent

with so ncm structures become inequivalent, additionally for ncm3 and ncm4 Mn2 and
Mn5 are no longer equivalent to the rest of Mn’s
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NCM input file

case.inncm:
FULL

0 0 0

60.00000 90.00000 0

180.00000 90.00000 0

300.00000 90.00000 0

60.00000 90.00000 0

180.00000 90.00000 0

300.00000 90.00000 0

0.00000 0.00000 0

0.00000 180.00000 0

0.50000

first record defines mode of calculation
(FULL/AMA)

second record defines spin-spiral
vector;

next records contain polar angles (φ, θ)
defining directions of magnetisation in
each sphere and optimisation switch;

last number is a mixing parameter used
during calculation of the constrain field;

case.inncm is used in initialisation stage, to lower chemical symmetry
due to magnetic moments;

lapw1, lapw2, lapwdm use it to define quantisation axes for atomic
spheres;

wien workshop 2003 – p.33/40



NCM input file

case.inncm:
FULL

0 0 0

60.00000 90.00000 0

180.00000 90.00000 0

300.00000 90.00000 0

60.00000 90.00000 0

180.00000 90.00000 0

300.00000 90.00000 0

0.00000 0.00000 0

0.00000 180.00000 0

0.50000

first record defines mode of calculation
(FULL/AMA)

second record defines spin-spiral
vector;

next records contain polar angles (φ, θ)
defining directions of magnetisation in
each sphere and optimisation switch;

last number is a mixing parameter used
during calculation of the constrain field;

case.inncm is used in initialisation stage, to lower chemical symmetry
due to magnetic moments;

lapw1, lapw2, lapwdm use it to define quantisation axes for atomic
spheres;

wien workshop 2003 – p.33/40



NCM input file

case.inncm:
FULL

0 0 0

60.00000 90.00000 0

180.00000 90.00000 0

300.00000 90.00000 0

60.00000 90.00000 0

180.00000 90.00000 0

300.00000 90.00000 0

0.00000 0.00000 0

0.00000 180.00000 0

0.50000

first record defines mode of calculation
(FULL/AMA)

second record defines spin-spiral
vector;

next records contain polar angles (φ, θ)
defining directions of magnetisation in
each sphere and optimisation switch;

last number is a mixing parameter used
during calculation of the constrain field;

case.inncm is used in initialisation stage, to lower chemical symmetry
due to magnetic moments;

lapw1, lapw2, lapwdm use it to define quantisation axes for atomic
spheres;

wien workshop 2003 – p.33/40



How to run it?

initialisation – looks like in collinear code, but symmetry must be lowered because of
magnetic momenta;

x ncmsymmetry

SCF cycle looks like:

x lapw0 -ncm [...]

[ x orb -up, x orb -du ]

x lapw1 -ncm [-p -orb -so ...]

x lapw2 -ncm [-p ....]

[ x lapwdm -ncm [-p ...] ]

x lcore -up

x lcore -dn

x mixer -ncm

SCF job can be run with runncm script which is modified version of WIEN2k run script

runncm [-p -so -orb -cc 0.0001 ...]
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Appendix - augmentation go back

Expansion coefficients A ~Gσσα

L and B ~Gσσα

L are calculated from matching condition:

ei(~G+~k)~rχg
σ =

σαL

�

A
~Gσσα

L uσα

l +B
~Gσσα

L u̇σα

l

�

YLχ
g
σα ,

where the both spinors are represented in a global coordinate frame. Multiplying both sides
by

�

χg
σα

� ∗, integrating over spin variable, and comparing to the collinear expression:

ei(~G+~k)·~r =
L

�

A
~Gσα

L uσα

l +B
~Gσα

L u̇σα

l

�

YL.

A
~Gσσα

L and B ~Gσσα

L are given by:

A
~Gσσα

L =

�

χg
σα

� ∗
χg

σA
~Gσα

L ,

B
~Gσσα

L =

�

χg
σα

� ∗
χg

σB
~Gσα

L .
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Appendix - Hamiltonian setup go back

interstices - basis functions are plane waves: ϕ ~Gσ
= ei(~G+~k)~·rχσ , and matrix

elements:

�

ϕ~Gσ

��
��
� Ĥ

��
��
� ϕ~G′σ′

�

= (Vσσ′Θ)(~G−~G′) + δσσ′

�

2m

�

~G′ + ~k
�

2

Θ(~G−~G′)

where Θ is a step function, Vσσ′ are components of the potential matrix.

spheres - ϕPW
~Gσ

=

�

σα φ
~G
σσαχα =

�

σα

�

L A
~Gσσα

L uσα

l
YLχα, setup of the

Hamiltonian looks like:

�

ϕPW
~Gσ

|

�

H | ϕPW
~G′σ′

�

=
σα L

Aσα

L

�

~G, σ

�

Bσα

L

�

~G′, σ′

�

,

Aσα

L

�

~G, σ

�

= A
~Gσσα

L ,

Bσα

L

�

~G′, σ′

�

=

σ′α L′

A
~G′σ′σ′α

L′

�

uσα

l YL | Hσασ′α | uσ′α

l′ YL′

�

.
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Appendix - density matrix

ρσσ′ =
1

2
nI2 + σ · −→m =

1

2

�
�

n+mz mx − imy

mx + imy n−mz

�
�

interstices (ρ~G
σσ′ )

ρσσ′ (~r) =
υ

〈σ | ψυ〉

�

ψυ | σ′

�

=

~G

ρ
~G
σσ′e

i ~G~·r

wave function is generated in real space: ψσ
υ (~r) =

�

~G
c

~G
υ e

i(~G+~r)~·rχσ , υ
indexes band and k-point.

ρσσ′ (~r) =

�

υ (ψσ
υ (~r))∗ ψσ′

υ (~r) ,

ρσσ′ (~r) is Fourier transformed into ρ ~G
σσ′ .
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Appendix - density matrix

spheres (ρL
σασ′α )

ρσασ′α (~r) =
υ

〈σα | ψυ〉

�

ψυ | σ′α

�

=
L

ρL
σασ′α (r)Y s

L (r̂)

ρL
σασ′α are calculated with the following expression:

ρL
σασ′α =

ij l′l′′ υ m′m′′

Diσα

υL′D
jσ′α

υL′′
G

�

L,L′, L′′

�

uσα

l′ uσ′α

l′′ ,

where Diσα

υL (i stands for A, B, C) are given by:

PW : DA,σα

υL
=

σ G

c
~G
υ A

~Gσσα

L

LO, lo : DA,σα

υL
=

G

c
~G
υ A

~Gσα

L
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Appendix - potential matrix

1. local real space diagonalisation:

ρL
σασ′α

ρ
~G
σσ′

→
ρσασ′α (~r)

ρσσ′ (~r)
→

�
�

ρ↑ (r) 0

0 ρ↑ (r)
�

� →
ρL
↑
, ρL

↓

ρ
~G
↑
, ρ

~G
↓

2. generation of collinear potentials:

ρL
↑
, ρL

↓

ρ
~G
↑
, ρ

~G
↓

→
V L
↑
, V L

↓

V
~G
↑
, V

~G
↓

3. local de-diagonalisation of collinear potentials in real space:

V L
↑
, V L

↓

V
~G

↑
, V

~G
↓

→

�
�

V↑ (r) 0

0 V↑ (r)

�
� →

Vσασ′α (~r)

Vσσ′ (~r)
→

V L
σασ′α

V
~G

σσ′
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