Non-collinear magnetism in WIEN2k

Robert Laskowski

rolask@theochem.tuwien.ac.at

TU Wien

wien workshop 2003 - p.1/40

theoretical introduction;

- theoretical introduction;
 - try to place implemented equations in a sequance of approximations begining from Dirac equation

- theoretical introduction;
 - try to place implemented equations in a sequance of approximations begining from Dirac equation
- important details of implementations;

- theoretical introduction;
 - try to place implemented equations in a sequance of approximations begining from Dirac equation
- important details of implementations;
- examples of calculations;

- theoretical introduction;
 - try to place implemented equations in a sequance of approximations begining from Dirac equation
- important details of implementations;
- examples of calculations;
- how to run the code?;

Spin as a dynamical variable is of great importance in magnetism. Thus we start with Dirac Hamiltonian.

$$H_D = c\vec{\alpha} \cdot \vec{p} + \beta mc^2 + V$$

$$H_D = c \vec{\alpha} \cdot \vec{p} + \beta m c^2 + V$$

 $\vec{\alpha}$ is 3-component vector of 4x4 matrixes:

$$\alpha_k = \left(\begin{array}{cc} 0 & \sigma_k \\ \sigma_k & 0 \end{array}\right)$$

$$H_D = c \overrightarrow{\alpha} \cdot \overrightarrow{p} + \beta m c^2 + V$$

 $\vec{\alpha}$ is 3-component vector of 4x4 matrixes:

$$\alpha_k = \left(\begin{array}{cc} 0 & \sigma_k \\ \sigma_k & 0 \end{array}\right)$$

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Pauli matrixes:

$$\sigma_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

$$H_D = c\vec{\alpha} \cdot \vec{p} + \beta mc^2 + V$$

$$\beta$$
 is 4x4 matrix: $\beta = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix} \quad \mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

$$H_D = c\vec{\alpha} \cdot \vec{p} + \beta mc^2 + V$$

$$\beta$$
 is 4x4 matrix: $\beta = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix} \quad \mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- \boldsymbol{m} is electron mass, \boldsymbol{c} speed of the light
- **p** momentum operator
- \mathbf{V} efective potential, which is related to density (DFT)

$$H_D = c\vec{\alpha} \cdot \vec{p} + \beta mc^2 + V$$
$$H_D \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} = \varepsilon \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$$

Dirac equation

wien workshop 2003 - p.7/40

$$H_D = c\vec{\alpha} \cdot \vec{p} + \beta mc^2 + V$$
$$H_D \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} = \varepsilon \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$$

- Hamiltonian is 4x4 matrix operator
- wave function is 4 component vector

- Hamiltonian is 4x4 matrix operator
- wave function is 4 component vector

neglecting contribution of small component to the charge density, one can derive 2x2 Pauli like Hamiltonian

$$H_P = -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_{eff} + \zeta \cdot \left(\vec{\sigma} \cdot \vec{l}\right) + \dots$$

$$H_P = -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_{eff} + \zeta \cdot \left(\vec{\sigma} \cdot \vec{l}\right) + \dots$$

- Hamiltonian is 2x2 matrix operator
- wave function is 2 component vector

$$H_P = -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_{eff} + \zeta \cdot \left(\vec{\sigma} \cdot \vec{l}\right) + \dots$$

- Hamiltonian is 2x2 matrix operator
- wave function is 2 component vector

$$H_P\left(\begin{array}{c}\psi_1\\\psi_2\end{array}\right) = \varepsilon \left(\begin{array}{c}\psi_1\\\psi_2\end{array}\right)$$

$$H_P = -\frac{\hbar^2}{2m} \nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_{eff} + \zeta \cdot \left(\vec{\sigma} \cdot \vec{l}\right) + \dots$$
• Hamiltonian is 2x2 matrix operator
• wave function is 2 component vector
spin up
component
$$H_P \left(\begin{array}{c} \psi_1 \\ \psi_2 \end{array} \right) = \varepsilon \left(\begin{array}{c} \psi_1 \\ \psi_2 \end{array} \right) \qquad \text{spin down component}$$

$$V_{eff} = V_{ext} + V_H + V_{xc} \qquad \qquad \vec{B}_{eff} = \vec{B}_{ext} + \vec{B}_{xc}$$

Exchange potential and field

In DFT V_{xc} and \vec{B}_{xc} are defined by:

$$V_{xc} = \frac{\partial E_{xc}(n, \vec{m})}{\partial n}, \qquad \vec{B}_{xc} = \frac{\partial E_{xc}(n, \vec{m})}{\partial \vec{m}}$$

In local density approximation (LDA):

$$E_{xc}\left(n,\vec{m}\right) = \int n\epsilon_{xc}\left(n,m\right) dr^{3}$$

what results in:

$$V_{xc} = \epsilon_{xc} (n, m) + n \frac{\partial \epsilon_{xc} (n, m)}{\partial n}, \qquad \vec{B}_{xc} = n \frac{\partial \epsilon_{xc} (n, m)}{\partial m} \hat{m}$$

Exchange potential and field

In DFT V_{xc} and \vec{B}_{xc} are defined by:

$$V_{xc} = \frac{\partial E_{xc} (n, \vec{m})}{\partial n}, \qquad \vec{B}_{xc} = \frac{\partial E_{xc} (n, \vec{m})}{\partial \vec{m}}$$

In local density approximation (LDA):

$$E_{xc}(n,\vec{m}) = \int n\epsilon_{xc}(n,m) \, dr^3$$

what results in:

$$V_{xc} = \epsilon_{xc} (n,m) + n \frac{\partial \epsilon_{xc} (n,m)}{\partial n}, \qquad \qquad \vec{B}_{xc} = n \frac{\partial \epsilon_{xc} (n,m)}{\partial m} \hat{m}$$

exchange field is parallel to local magnetisation density vector

Non-collinear case

$$H_P = -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_{eff} + \zeta \cdot \left(\vec{\sigma} \cdot \vec{l}\right) + \dots$$

If we take everything, and also allow magnetisation to vary its direction from point to point, we will end up with 2x2 Hamiltonian:

$$\begin{pmatrix} -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B\vec{\sigma}\cdot\vec{B}_z + \dots & \mu_B\left(B_x - iB_y\right) + \dots \\ \mu_B\left(B_x + iB_y\right) + \dots & -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} - \mu_B\vec{\sigma}\cdot\vec{B}_z + \dots \end{pmatrix} \varphi = \varepsilon\varphi$$

Non-collinear case

$$H_P = -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_{eff} + \zeta \cdot \left(\vec{\sigma} \cdot \vec{l}\right) + \dots$$

If we take everything, and also allow magnetisation to vary its direction from point to point, we will end up with 2x2 Hamiltonian:

$$\begin{pmatrix} -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B\vec{\sigma}\cdot\vec{B}_z + \dots & \mu_B\left(B_x - iB_y\right) + \dots \\ \mu_B\left(B_x + iB_y\right) + \dots & -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} - \mu_B\vec{\sigma}\cdot\vec{B}_z + \dots \end{pmatrix} \varphi = \varepsilon\varphi$$

solutions are non-pure spinors

$$arphi = \left(egin{array}{c} \psi_{\uparrow} \ \psi_{\downarrow} \end{array}
ight), \quad \psi_{\uparrow}, \ \psi_{\downarrow}
eq 0$$

this is non-collinearity

Collinear case

$$H_P = -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_{eff} + \zeta \cdot \left(\vec{\sigma} \cdot \vec{l}\right) + \dots$$

If we ignore only spin-orbit term, and allow magnetisation to point in one direction (z), resulting Hamiltonian will be diagonal in spin-space.

$$\begin{pmatrix} -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_z & 0 \\ 0 & -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} - \mu_B \vec{\sigma} \cdot \vec{B}_z \end{pmatrix} \varphi = \varepsilon \varphi$$

Collinear case

$$H_P = -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_{eff} + \zeta \cdot \left(\vec{\sigma} \cdot \vec{l}\right) + \dots$$

If we ignore only spin-orbit term, and allow magnetisation to point in one direction (z), resulting Hamiltonian will be diagonal in spin-space.

$$\begin{pmatrix} -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_z & 0 \\ 0 & -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} - \mu_B \vec{\sigma} \cdot \vec{B}_z \end{pmatrix} \varphi = \varepsilon \varphi$$

$$arphi_{\uparrow} = \left(egin{array}{c} \psi_{\uparrow} \\ 0 \end{array}
ight), \ arphi_{\downarrow} = \left(egin{array}{c} 0 \\ \psi_{\downarrow} \end{array}
ight)$$

 $\varepsilon_{\uparrow} \neq \varepsilon_{\downarrow}$

- solutions are pure spinors
- with non-degenerate energies
- collinear magnetism

Non-magnetic case

$$H_P = -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_{eff} + \zeta \cdot \left(\vec{\sigma} \cdot \vec{l}\right) + \dots$$

If we ignore spin-orbit term and magnetic exchange field, resulting Hamiltonian will be diagonal in spin-space.

$$\begin{pmatrix} -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} & 0\\ 0 & -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} \end{pmatrix} \varphi = \varepsilon \varphi$$

Non-magnetic case

$$H_P = -\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \mu_B \vec{\sigma} \cdot \vec{B}_{eff} + \zeta \cdot \left(\vec{\sigma} \cdot \vec{l}\right) + \dots$$

If we ignore spin-orbit term and magnetic exchange field, resulting Hamiltonian will be diagonal in spin-space.

$$\begin{pmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V_{eff} & 0 \\ 0 & -\frac{\hbar^2}{2m} \nabla^2 + V_{eff} \end{pmatrix} \varphi = \varepsilon \varphi$$

$$\varphi_{\uparrow} = \left(egin{array}{c} \psi \\ 0 \end{array}
ight), \ \varphi_{\downarrow} = \left(egin{array}{c} 0 \\ \psi \end{array}
ight)$$

- solutions are pure spinors
- with degenerate energies
- non-magnetic solution

Implementation of non-collinearity means that we allow both part of the eigen-spinor ($\psi_{\uparrow}, \psi_{\downarrow}$) to be non zero at the same time. As a result:

Implementation of non-collinearity means that we allow both part of the eigen-spinor ($\psi_{\uparrow}, \psi_{\downarrow}$) to be non zero at the same time. As a result:

we have to deal with 2x2 Hamiltonian, instead of 1x1 as in collinear cases

Implementation of non-collinearity means that we allow both part of the eigen-spinor ($\psi_{\uparrow}, \psi_{\downarrow}$) to be non zero at the same time. As a result:

- we have to deal with 2x2 Hamiltonian, instead of 1x1 as in collinear cases
- this means that diagonalisation is 4 times more expensive

Implementation of non-collinearity means that we allow both part of the eigen-spinor ($\psi_{\uparrow}, \psi_{\downarrow}$) to be non zero at the same time. As a result:

- we have to deal with 2x2 Hamiltonian, instead of 1x1 as in collinear cases
- this means that diagonalisation is 4 times more expensive
- this is usually much more because of losing symmetry operations

Implementations of NCM in LAPW

 $\psi_{\uparrow}, \ \psi_{\downarrow}$ can be non-zero only when basis allows for that.

Implementations of NCM in LAPW

 $\psi_{\uparrow}, \ \psi_{\downarrow}$ can be non-zero only when basis allows for that.

- L. Nordström and D. J. Singh Phys. Rev. Lett. 76, 4420 (1996).
 - pure spinor non polarised basis, given in one global spin coordinate frame,
 - basis must be supplemented by additional local orbitals,
 - magnetisation is a continuous field.

Implementations of NCM in LAPW

- Ph. Kurz at al. Phys. Rev. B 63, 96401 (2001),
 - interstitial region and each atomic sphere have their own quantisation axis,
 - quantisation axis of a sphere is supposed to point in a direction of average magnetisation,
 - basis functions are pure spinor in interstitial region,
 - inside spheres non-pure spinors but polarised,
 - atomic moment approximation (AMA).

This is implemented in WIEN2k

Spin coordinate sets

Spin coordinate sets

Interstices:
$$\varphi_{\vec{G}\sigma} = e^{i(\vec{G}+\vec{k})\cdot\vec{r}}\chi_{\sigma}$$
, where $\chi_{\sigma} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, or $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Basis functions

spheres - combination of pure spinors in a local coordinate frame:

 the direction of the quantisation axis is along an average magnetisation inside the sphere,

Basis functions

spheres - combination of pure spinors in a local coordinate frame:

 the direction of the quantisation axis is along an average magnetisation inside the sphere,

$$\begin{split} \varphi_{\vec{G}\sigma}^{APW}\left(\vec{k}\right) &= \sum_{\sigma^{\alpha}} \sum_{L} \left(A_{L}^{\vec{G}\sigma\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} + B_{L}^{\vec{G}\sigma\sigma^{\alpha}} \dot{u}_{l}^{\sigma^{\alpha}} \right) Y_{L} \chi_{\sigma^{\alpha}}, \\ \varphi_{\vec{G}\sigma^{\alpha}}^{LO} &= \left(A_{L}^{\vec{G}\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} + B_{L}^{\vec{G}\sigma\sigma^{\alpha}} \dot{u}_{l}^{\sigma^{\alpha}} + C_{L}^{\vec{G}\sigma^{\alpha}} u_{2,l}^{\sigma^{\alpha}} \right) Y_{L} \chi_{\sigma^{\alpha}} \end{split}$$

 Y_L is a spherical harmonic, L stands for (l, m), $\chi_{\sigma^{\alpha}}$ is a spinor given in a local coordinate frame, u, \dot{u} are radial function and its energy derivative.

$$\begin{split} \varphi_{\vec{G}\sigma}^{APW}\left(\vec{k}\right) &= \sum_{\sigma^{\alpha}} \sum_{L} \left(A_{L}^{\vec{G}\sigma\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} + B_{L}^{\vec{G}\sigma\sigma^{\alpha}} \dot{u}_{l}^{\sigma^{\alpha}} \right) Y_{L} \chi_{\sigma^{\alpha}}, \\ \varphi_{\vec{G}\sigma^{\alpha}}^{LO} &= \left(A_{L}^{\vec{G}\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} + B_{L}^{\vec{G}\sigma\sigma^{\alpha}} \dot{u}_{l}^{\sigma^{\alpha}} + C_{L}^{\vec{G}\sigma^{\alpha}} u_{2,l}^{\sigma^{\alpha}} \right) Y_{L} \chi_{\sigma^{\alpha}} \end{split}$$

 \blacksquare A_L , B_L , C_L are calculated from sphere boundary conditions.

$$\begin{split} \varphi_{\vec{G}\sigma}^{APW}\left(\vec{k}\right) &= \sum_{\sigma^{\alpha}} \sum_{L} \left(A_{L}^{\vec{G}\sigma\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} + B_{L}^{\vec{G}\sigma\sigma^{\alpha}} \dot{u}_{l}^{\sigma^{\alpha}} \right) Y_{L} \chi_{\sigma^{\alpha}}, \\ \varphi_{\vec{G}\sigma^{\alpha}}^{LO} &= \left(A_{L}^{\vec{G}\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} + B_{L}^{\vec{G}\sigma\sigma^{\alpha}} \dot{u}_{l}^{\sigma^{\alpha}} + C_{L}^{\vec{G}\sigma^{\alpha}} u_{2,l}^{\sigma^{\alpha}} \right) Y_{L} \chi_{\sigma^{\alpha}} \end{split}$$

- A_L , B_L , C_L are calculated from sphere boundary conditions.
 - for *APW/LAPW* matching is done to \uparrow and \downarrow plane waves in a global spin coordinate frame. Thus A_L , B_L depend on global σ and local σ^{α} spin indexes, and on *k*-point.

$$\begin{split} \varphi_{\vec{G}\sigma}^{APW}\left(\vec{k}\right) &= \sum_{\sigma^{\alpha}} \sum_{L} \left(A_{L}^{\vec{G}\sigma\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} + B_{L}^{\vec{G}\sigma\sigma^{\alpha}} \dot{u}_{l}^{\sigma^{\alpha}} \right) Y_{L} \chi_{\sigma^{\alpha}}, \\ \varphi_{\vec{G}\sigma^{\alpha}}^{LO} &= \left(A_{L}^{\vec{G}\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} + B_{L}^{\vec{G}\sigma\sigma^{\alpha}} \dot{u}_{l}^{\sigma^{\alpha}} + C_{L}^{\vec{G}\sigma^{\alpha}} u_{2,l}^{\sigma^{\alpha}} \right) Y_{L} \chi_{\sigma^{\alpha}} \end{split}$$

 \blacksquare A_L , B_L , C_L are calculated from sphere boundary conditions.

- for *APW/LAPW* matching is done to \uparrow and \downarrow plane waves in a global spin coordinate frame. Thus A_L , B_L depend on global σ and local σ^{α} spin indexes, and on *k*-point.
- LO has to vanish at a sphere boundary. It is a pure spinor in a local coordinate frame $(A_L, B_L, C_L$ depend only on σ^{α}).

$$\begin{split} \varphi_{\vec{G}\sigma}^{APW}\left(\vec{k}\right) &= \sum_{\sigma^{\alpha}} \sum_{L} \left(A_{L}^{\vec{G}\sigma\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} + B_{L}^{\vec{G}\sigma\sigma^{\alpha}} \dot{u}_{l}^{\sigma^{\alpha}} \right) Y_{L} \chi_{\sigma^{\alpha}}, \\ \varphi_{\vec{G}\sigma^{\alpha}}^{LO} &= \left(A_{L}^{\vec{G}\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} + B_{L}^{\vec{G}\sigma\sigma^{\alpha}} \dot{u}_{l}^{\sigma^{\alpha}} + C_{L}^{\vec{G}\sigma^{\alpha}} u_{2,l}^{\sigma^{\alpha}} \right) Y_{L} \chi_{\sigma^{\alpha}} \end{split}$$

 \blacksquare A_L , B_L , C_L are calculated from sphere boundary conditions.

- for *APW/LAPW* matching is done to \uparrow and \downarrow plane waves in a global spin coordinate frame. Thus A_L , B_L depend on global σ and local σ^{α} spin indexes, and on *k*-point.
- LO has to vanish at a sphere boundary. It is a pure spinor in a local coordinate frame $(A_L, B_L, C_L$ depend only on σ^{α}).
- for **APW** type of basis B = 0 in *PW* and *LO*, and additional local orbital "*lo*" is introduced with C = 0, and $B \neq 0$.

Hamiltonian (...)

In the interstitial region we don't have spin-orbit, Hamiltonian is a sum of only kinetic energy and effective potentials:

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + \hat{V},$$

where \hat{V} combines V_{eff} and B_{eff} in a form of 2x2 potential matrix.

Hamiltonian (...)

In the interstitial region we don't have spin-orbit, Hamiltonian is a sum of only kinetic energy and effective potentials:

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + \hat{V},$$

where \hat{V} combines V_{eff} and B_{eff} in a form of 2x2 potential matrix.

In the **spheres** w can have everything Thus, Hamiltonian is more complicated:

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + \hat{V} + \hat{H}_{so} + \hat{H}_{orb} + \hat{H}_c$$

As a result, there are same choices:

inside sphere potential matrix: $\hat{V} = \hat{V}^d + \hat{V}^{off}$.

- inside sphere potential matrix: $\hat{V} = \hat{V}^d + \hat{V}^{off}$.
 - AMA mode (atomic moment approximation) \hat{V}^{off} is ignored.

$$\hat{V} = \left(\begin{array}{cc} V_{\uparrow\uparrow} & 0 \\ 0 & V_{\downarrow\downarrow} \end{array} \right)$$

- inside sphere potential matrix: $\hat{V} = \hat{V}^d + \hat{V}^{off}$.
 - AMA mode (atomic moment approximation) \hat{V}^{off} is ignored.

$$\hat{V} = \left(\begin{array}{cc} V_{\uparrow\uparrow} & 0 \\ 0 & V_{\downarrow\downarrow} \end{array} \right)$$

FULL mode (non-collinearity inside spheres)

$$\hat{V} = \left(\begin{array}{cc} V_{\uparrow\uparrow} & 0\\ 0 & V_{\downarrow\downarrow} \end{array}\right) + \left(\begin{array}{cc} 0 & V_{\uparrow\downarrow}\\ V_{\downarrow\uparrow} & 0 \end{array}\right)$$

SO (spin-orbit coupling) -

$$\hat{H}_{so} = \xi \vec{\sigma} \cdot \vec{l} = \xi \begin{pmatrix} \hat{l}_z & \sigma_x - i \hat{l}_y \\ \hat{l}_x + i \hat{l}_y & -\hat{l}_z \end{pmatrix},$$

SO (spin-orbit coupling) -

$$\hat{H}_{so} = \xi \vec{\sigma} \cdot \vec{l} = \xi \begin{pmatrix} \hat{l}_z & \sigma_x - i \hat{l}_y \\ \hat{l}_x + i \hat{l}_y & -\hat{l}_z \end{pmatrix},$$

$$\hat{H}_{orb} = \sum_{m,m'} \left(\begin{array}{cc} |m\rangle \, v_{mm'}^{\uparrow} \, \langle m'| & 0 \\ 0 & |m\rangle \, v_{mm'}^{\downarrow} \, \langle m'| \end{array} \right),$$

SO (spin-orbit coupling) -

$$\hat{H}_{so} = \xi \vec{\sigma} \cdot \vec{l} = \xi \begin{pmatrix} \hat{l}_z & \sigma_x - i \hat{l}_y \\ \hat{l}_x + i \hat{l}_y & -\hat{l}_z \end{pmatrix},$$

$$\hat{H}_{orb} = \sum_{m,m'} \begin{pmatrix} |m\rangle v_{mm'}^{\uparrow} \langle m'| & 0\\ 0 & |m\rangle v_{mm'}^{\downarrow} \langle m'| \end{pmatrix},$$

constrain field ($ec{B_c} \perp \hat{z}_lpha$) -

$$\hat{H}_c = \mu_B \vec{B}_c \cdot \vec{\sigma} = \left(\begin{array}{cc} 0 & \mu_B \left(B_{c,x} - i B_{c,y} \right) \\ \mu_B \left(B_{c,x} + i B_{c,y} \right) & 0 \end{array} \right)$$

SO (spin-orbit coupling) -

$$\hat{H}_{so} = \xi \vec{\sigma} \cdot \vec{l} = \xi \begin{pmatrix} \hat{l}_z & \sigma_x - i \hat{l}_y \\ \hat{l}_x + i \hat{l}_y & -\hat{l}_z \end{pmatrix},$$

$$\hat{H}_{orb} = \sum_{m,m'} \left(egin{array}{cc} |m
angle v^{\uparrow}_{mm'} \langle m'| & 0 \ 0 & |m
angle v^{\downarrow}_{mm'} \langle m'| \end{array}
ight),$$

constrain field ($ec{B_c} \perp \hat{z}_lpha$) -

$$\hat{H}_c = \mu_B \vec{B}_c \cdot \vec{\sigma} = \begin{pmatrix} 0 & \mu_B \left(B_{c,x} - i B_{c,y} \right) \\ \mu_B \left(B_{c,x} + i B_{c,y} \right) & 0 \end{pmatrix}.$$

Matrix elements (integrals):

$$\begin{aligned} H_{\vec{G},\vec{G'}} &= \left\langle \psi_{\vec{G}} \left| \hat{H} \right| \phi_{\vec{G'}} \right\rangle, \\ S_{\vec{G},\vec{G'}} &= \left\langle \psi_{\vec{G}} \mid \phi_{\vec{G'}} \right\rangle, \end{aligned}$$

APW down

where ψ and ϕ can be APW or LO, \uparrow or \downarrow

LO down

spin-spiral is defined by a vector \vec{q} given in reciprocal space and an angle v between magnetic moment and rotation axis,

 \checkmark pure translations are obviously not symmetry operations of H,

$$H\left(\vec{r}+\vec{R}^{n}\right)\neq H\left(\vec{r}\right),$$

Pure translations are obviously not symmetry operations of H,

$$H\left(\vec{r}+\vec{R}^n\right)\neq H\left(\vec{r}\right),\,$$

Itranslations coupled with spin space rotations $T_n = \left\{ -\vec{q} \cdot \vec{R}^n |\epsilon| \vec{R}^n \right\}$ are symmetry operations of *H*;

$$T_n^{\dagger} H\left(\vec{r}\right) T_n = U^{\dagger} \left(-\vec{q} \cdot \vec{R}^n\right) H\left(\vec{r} + \vec{R}^n\right) U\left(-\vec{q} \cdot \vec{R}^n\right),$$

Pure translations are obviously not symmetry operations of H,

$$H\left(\vec{r}+\vec{R}^n\right)\neq H\left(\vec{r}\right),\,$$

Itranslations coupled with spin space rotations $T_n = \left\{ -\vec{q} \cdot \vec{R}^n |\epsilon| \vec{R}^n \right\}$ are symmetry operations of H;

$$T_n^{\dagger} H\left(\vec{r}\right) T_n = U^{\dagger} \left(-\vec{q} \cdot \vec{R}^n\right) H\left(\vec{r} + \vec{R}^n\right) U\left(-\vec{q} \cdot \vec{R}^n\right),$$

• Group of T_n is Abelian, thus it has one dimensional representations,

$$T_{n}\psi_{k}\left(\mathbf{r}\right) = U\left(-\mathbf{q}\cdot\mathbf{R}^{n}\right)\psi_{k}\left(\mathbf{r}+\mathbf{R}^{n}\right) = e^{i\mathbf{k}\cdot\mathbf{R}^{n}}\psi_{k}\left(\mathbf{r}\right).$$

Pure translations are obviously not symmetry operations of H,

$$H\left(\vec{r}+\vec{R}^n\right)\neq H\left(\vec{r}\right),\,$$

Itranslations coupled with spin space rotations $T_n = \left\{ -\vec{q} \cdot \vec{R}^n |\epsilon| \, \vec{R}^n \right\}$ are symmetry operations of *H*;

$$T_n^{\dagger} H\left(\vec{r}\right) T_n = U^{\dagger} \left(-\vec{q} \cdot \vec{R}^n\right) H\left(\vec{r} + \vec{R}^n\right) U\left(-\vec{q} \cdot \vec{R}^n\right),$$

Group of T_n is Abelian, thus it has one dimensional representations,

$$T_{n}\psi_{k}\left(\mathbf{r}\right) = U\left(-\mathbf{q}\cdot\mathbf{R}^{n}\right)\psi_{k}\left(\mathbf{r}+\mathbf{R}^{n}\right) = e^{i\mathbf{k}\cdot\mathbf{R}^{n}}\psi_{k}\left(\mathbf{r}\right).$$

Bloch theorem!!!

Wave function of a spiral structure is of the form:

$$\psi_{k}\left(\mathbf{r}\right) = e^{i\mathbf{k}\cdot\mathbf{r}} \begin{pmatrix} e^{\frac{-i\mathbf{q}\cdot\mathbf{r}}{2}}u_{k}^{\uparrow}\left(\mathbf{r}\right) \\ e^{\frac{i\mathbf{q}\cdot\mathbf{r}}{2}}u_{k}^{\downarrow}\left(\mathbf{r}\right) \end{pmatrix},$$

where $u^{\sigma}(r)$ has translational periodicity.

• Wave function of a spiral structure is of the form:

$$\psi_{k}\left(\mathbf{r}\right) = e^{i\mathbf{k}\cdot\mathbf{r}} \begin{pmatrix} e^{\frac{-i\mathbf{q}\cdot\mathbf{r}}{2}}u_{k}^{\uparrow}\left(\mathbf{r}\right) \\ e^{\frac{i\mathbf{q}\cdot\mathbf{r}}{2}}u_{k}^{\downarrow}\left(\mathbf{r}\right) \end{pmatrix},$$

where $u^{\sigma}(r)$ has translational periodicity.

$$\left|\mathbf{G} + \mathbf{k} \pm \frac{\mathbf{q}}{2}\right| \le G_{max},$$

with "--" for \uparrow , and "+" for \downarrow . This can generate different numbers of basis functions for \uparrow and \downarrow spins.

Intra-atomic NCM, fcc Pu

(a) plane x = 0 (b) plane z = 1/10

Spin density maps of fcc Pu. Calculation in FULL mode with SO. Average momenta point to

 $\langle 001 \rangle$

Intra-atomic NCM, bcc U

(C) plane
$$x = 1/2$$
 (d) plane $z = 6/10$

Spin density maps of **bcc U** (unit cell size 9 a.u.). Calculation in FULL mode with SO. Average momenta point to $\langle 001 \rangle$

γ Fe, spin spiral

Local spin moment and total energy versus spin-spiral \vec{q} vector.

γ Fe, spin spiral

Spin density maps for q = 0.6 (0- Γ , 1-X)

Magnetic structure of Mn_3Sn

Chemical structure of Mn_3Sn

fm

wien workshop 2003 - p.31/40

fm

afm

fm

afm

ncm 1

fm

afm

ncm 1

ncm 2

fm

afm

ncm 1

ncm 2

ncm 3

	SO	fm	afm	ncm 1	ncm 2	ncm 3	ncm 4
$E_{fm} - E \ [Ry]$	-	0.0	0.0131	0.0444	0.0444	0.0444	0.0444
	+	0.0	0.0133	0.0441	0.0439	0.0444	0.0445
$M_s \; [\mu_B]$	-	3.012	2.684	3.037	3.037	3.037	3.037
	+	3.008	2.679	3.034	3.034	3.038	3.037
efg on Mn	-	-1.657	-2.111	-0.894	-0.894	-0.894	-0.894
$[10^{21}V/m^2]$	+	-1.661	-2.119	-0.892	-0.899	-0.891	-0.894
						-0.898	-0.881
hff on Mn	-	-309.9	-153.1	31.2	31.2	31.2	31.2
[kGauss]	+	-309.6	-152.9	31.1	31.5	31.5	30.9
						32.2	32.1

in non-so case all ncm structures are symmetry equivalent

with so ncm structures become inequivalent, additionally for ncm3 and ncm4 Mn_2 and Mn_5 are no longer equivalent to the rest of Mn's

NCM input file

FULL 0 0 0 60.00000 90.00000 0 180.00000 90.00000 0 300.00000 90.00000 0 60.00000 90.00000 0 300.00000 90.00000 0 0.00000 90.00000 0 0.00000 90.00000 0 0.00000 90.00000 0 0.00000 180.00000 0 0.00000 180.00000 0 0.50000 0 0

NCM input file

case.inncm:

FULL	
0 0 0	
60.00000	90.00000 0
180.00000	90.00000 0
300.00000	90.00000 0
60.00000	90.00000 0
180.00000	90.00000 0
300.00000	90.00000 0
0.0000	0.00000 0
0.0000	180.00000 0
0.50000	

first record defines mode of calculation (FULL/AMA)

- second record defines spin-spiral vector;
- next records contain polar angles (ϕ , θ) defining directions of magnetisation in each sphere and optimisation switch;
- Iast number is a mixing parameter used during calculation of the constrain field;

NCM input file

case.inncm:			
FULL			
0 0 0			TIRST RECORD DETINES MODE OF CAICULATION
60.00000 90	0.00000 0		(FULL/AMA)
180.00000 90	0.00000 0	9	second record defines spin-spiral
300.00000 90	0.00000 0		vector;
60.00000 90	0.00000 0		next records contain polar angles (ϕ , θ)
180.00000 90	0.00000 0		defining directions of magnetisation in
300.00000 90	0.00000 0		each sphere and optimisation switch;
0.00000 (0.00000 0		last number is a mixing noremeter us
0.00000 18	80.00000 0		during coloulation of the constrain field.
0.50000			during calculation of the constrain field,

case.inncm is used in initialisation stage, to lower chemical symmetry due to magnetic moments;

lapw1, *lapw2*, *lapwdm* use it to define quantisation axes for atomic spheres;

How to run it?

initialisation – looks like in collinear code, but symmetry must be lowered because of magnetic momenta;

x ncmsymmetry

SCF cycle looks like:

x lapw0 -ncm [...] [x orb -up, x orb -du] x lapw1 -ncm [-p -orb -so ...] x lapw2 -ncm [-p ...] [x lapwdm -ncm [-p ...]] x lcore -up x lcore -dn x mixer -ncm

SCF job can be run with *runncm* script which is modified version of WIEN2k run script

runncm [-p -so -orb -cc 0.0001 ...]

Acknowledgements

Many thanks to: Georg Madsen Peter Blaha Karlheinz Schwarz

The End

wien workshop 2003 - p.35/40

Appendix - augmentation go back

Expansion coefficients $A_L^{\vec{G}\sigma\sigma^{\alpha}}$ and $B_L^{\vec{G}\sigma\sigma^{\alpha}}$ are calculated from matching condition:

$$e^{i\left(\vec{G}+\vec{k}\right)\vec{r}}\chi^g_{\sigma} = \sum_{\sigma^{\alpha}L} \left(A_L^{\vec{G}\sigma\sigma^{\alpha}} u_l^{\sigma^{\alpha}} + B_L^{\vec{G}\sigma\sigma^{\alpha}} \dot{u}_l^{\sigma^{\alpha}} \right) Y_L \chi^g_{\sigma^{\alpha}},$$

where the both spinors are represented in a global coordinate frame. Multiplying both sides by $(\chi^g_{\sigma^{\alpha}})^*$, integrating over spin variable, and comparing to the collinear expression:

$$e^{i\left(\vec{G}+\vec{k}\right)\cdot\vec{r}} = \sum_{L} \left(A_{L}^{\vec{G}\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} + B_{L}^{\vec{G}\sigma^{\alpha}} \dot{u}_{l}^{\sigma^{\alpha}} \right) Y_{L}.$$

 $A_L^{\vec{G}\sigma\sigma^{lpha}}$ and $B_L^{\vec{G}\sigma\sigma^{lpha}}$ are given by:

$$A_{L}^{\vec{G}\sigma\sigma^{\alpha}} = (\chi_{\sigma^{\alpha}}^{g})^{*} \chi_{\sigma}^{g} A_{L}^{\vec{G}\sigma^{\alpha}},$$
$$B_{L}^{\vec{G}\sigma\sigma^{\alpha}} = (\chi_{\sigma^{\alpha}}^{g})^{*} \chi_{\sigma}^{g} B_{L}^{\vec{G}\sigma^{\alpha}}.$$

Appendix - Hamiltonian setup

go back

Interstices - basis functions are plane waves: $\varphi_{\vec{G}\sigma} = e^{i(\vec{G}+\vec{k})\cdot\vec{r}}\chi_{\sigma}$, and matrix elements:

$$\left\langle \varphi_{\vec{G}\sigma} \left| \hat{H} \right| \varphi_{\vec{G}'\sigma'} \right\rangle = \left(V_{\sigma\sigma'} \Theta \right)_{\left(\vec{G} - \vec{G}'\right)} + \delta_{\sigma\sigma'} \frac{\hbar}{2m} \left(\vec{G}' + \vec{k} \right)^2 \Theta_{\left(\vec{G} - \vec{G}'\right)}$$

where Θ is a step function, $V_{\sigma\sigma'}$ are components of the potential matrix.

spheres - $\varphi_{\vec{G}\sigma}^{PW} = \sum_{\sigma^{\alpha}} \phi_{\sigma\sigma^{\alpha}}^{\vec{G}} \chi_{\alpha} = \sum_{\sigma^{\alpha}} \sum_{L} A_{L}^{\vec{G}\sigma\sigma^{\alpha}} u_{l}^{\sigma^{\alpha}} Y_{L} \chi_{\alpha}$, setup of the Hamiltonian looks like:

$$\begin{cases} \varphi_{\vec{G}\sigma}^{PW} \mid \hat{H} \mid \varphi_{\vec{G}'\sigma'}^{PW} \rangle &= \sum_{\sigma^{\alpha}} \sum_{L} A_{L}^{\sigma^{\alpha}} \left(\vec{G}, \sigma \right) B_{L}^{\sigma^{\alpha}} \left(\vec{G'}, \sigma' \right), \\ A_{L}^{\sigma^{\alpha}} \left(\vec{G}, \sigma \right) &= A_{L}^{\vec{G}\sigma\sigma^{\alpha}}, \\ B_{L}^{\sigma^{\alpha}} \left(\vec{G'}, \sigma' \right) &= \sum_{\sigma'^{\alpha}} \sum_{L'} A_{L'}^{\vec{G}'\sigma'\sigma'^{\alpha}} \left\langle u_{l}^{\sigma^{\alpha}} Y_{L} \mid H_{\sigma^{\alpha}\sigma'^{\alpha}} \mid u_{l'}^{\sigma'^{\alpha}} Y_{L'} \right\rangle. \end{cases}$$

Appendix - density matrix

$$\rho_{\sigma\sigma'} = \frac{1}{2}nI_2 + \sigma \cdot \overrightarrow{m} = \frac{1}{2} \begin{pmatrix} n+m_z & m_x - i m_y \\ m_x + i m_y & n - m_z \end{pmatrix}$$

9 interstices $(\rho_{\sigma\sigma'}^{\vec{G}})$

$$\rho_{\sigma\sigma'}\left(\vec{r}\right) = \sum_{\upsilon} \left\langle \sigma \mid \psi_{\upsilon} \right\rangle \left\langle \psi_{\upsilon} \mid \sigma' \right\rangle = \sum_{\vec{G}} \rho_{\sigma\sigma'}^{\vec{G}} e^{i\vec{G}\cdot\vec{r}}$$

• wave function is generated in real space: $\psi_{\upsilon}^{\sigma}(\vec{r}) = \sum_{\vec{G}} c_{\upsilon}^{\vec{G}} e^{i(\vec{G}+\vec{r})\cdot\vec{r}} \chi_{\sigma}, \upsilon$ indexes band and k-point.

•
$$\rho_{\sigma\sigma'}(\vec{r})$$
 is Fourier transformed into $\rho_{\sigma\sigma'}^{\vec{G}}$.

Appendix - density matrix

spheres $(\rho^L_{\sigma^\alpha\sigma'^\alpha})$

$$\rho_{\sigma^{\alpha}\sigma^{\prime\alpha}}\left(\vec{r}\right) = \sum_{\upsilon} \left\langle \sigma^{\alpha} \mid \psi_{\upsilon} \right\rangle \left\langle \psi_{\upsilon} \mid \sigma^{\prime\alpha} \right\rangle = \sum_{L} \rho_{\sigma^{\alpha}\sigma^{\prime\alpha}}^{L}\left(r\right) Y_{L}^{s}\left(\hat{r}\right)$$

• $\rho^L_{\sigma^{\alpha}\sigma^{\prime\alpha}}$ are calculated with the following expression:

$$\rho_{\sigma^{\alpha}\sigma^{\prime\alpha}}^{L} = \sum_{ij} \sum_{l'l''} \left(\sum_{\upsilon} \sum_{m'm''} D_{\upsilon L'}^{i\sigma^{\alpha}} D_{\upsilon L''}^{j\sigma^{\prime\alpha}} G\left(L, L', L''\right) \right) u_{l'}^{\sigma^{\alpha}} u_{l''}^{\sigma^{\prime\alpha}},$$

where $D_{\nu L}^{i\sigma^{\alpha}}$ (*i* stands for A, B, C) are given by:

$$PW: \quad D_{\upsilon L}^{A,\sigma^{\alpha}} = \sum_{\sigma} \sum_{G} c_{\upsilon}^{\vec{G}} A_{L}^{\vec{G}\sigma\sigma^{\alpha}}$$
$$LO, lo: \quad D_{\upsilon L}^{A,\sigma^{\alpha}} = \sum_{G} c_{\upsilon}^{\vec{G}} A_{L}^{\vec{G}\sigma^{\alpha}}$$

Appendix - potential matrix

1. local real space diagonalisation:

$$\begin{array}{cccc} \rho^{L}_{\sigma^{\alpha}\sigma'^{\alpha}} & \to & \rho_{\sigma^{\alpha}\sigma'^{\alpha}}\left(\vec{r}\right) \\ \rho^{\vec{G}}_{\sigma\sigma'} & \to & \rho_{\sigma\sigma'}\left(\vec{r}\right) & \to & \begin{pmatrix} \rho_{\uparrow}\left(r\right) & 0 \\ 0 & \rho_{\uparrow}\left(r\right) \end{pmatrix} & \to & \rho^{L}_{\uparrow}, \rho^{L}_{\downarrow} \\ 0 & \rho_{\uparrow}\left(r\right) \end{pmatrix}$$

2. generation of collinear potentials:

$$\begin{array}{cccc} \rho^L_{\uparrow}, \, \rho^L_{\downarrow} & \longrightarrow & V^L_{\uparrow}, \, V^L_{\downarrow} \\ \rho^{\vec{G}}_{\uparrow}, \, \rho^{\vec{G}}_{\downarrow} & \longrightarrow & V^{\vec{G}}_{\uparrow}, \, V^{\vec{G}}_{\downarrow} \end{array}$$

3. local de-diagonalisation of collinear potentials in real space:

$$\begin{array}{cccc} V_{\uparrow}^{L}, V_{\downarrow}^{L} & \\ V_{\uparrow}^{\vec{G}}, V_{\downarrow}^{\vec{G}} & \rightarrow & \left(\begin{array}{cccc} V_{\uparrow}\left(r\right) & 0 \\ 0 & V_{\uparrow}\left(r\right) \end{array} \right) & \rightarrow & \begin{array}{cccc} V_{\sigma^{\alpha}\sigma^{\prime\alpha}}\left(\vec{r}\right) & \rightarrow & V_{\sigma^{\alpha}\sigma^{\prime\alpha}}^{L} \\ V_{\sigma\sigma^{\prime}}\left(\vec{r}\right) & \rightarrow & V_{\sigma\sigma^{\prime}}^{L} \end{array} \right)$$