I. LDA TOTAL ENERGY

Total energy as given by Singh [1] eq. (2.1.3) is

$$
\begin{equation*}
E_{0}=T_{S, 0}+E_{e i}+E_{H}+E_{i i}+E_{X C} \tag{1}
\end{equation*}
$$

where:
$T_{S, 0}$ is the kinetic energy,
$E_{e i}$ is Coulomb electron-nuclei interaction,
E_{H} is the Hartree energy

$$
\begin{equation*}
E_{H}=\frac{e^{2}}{2} \int d \vec{r} d \vec{r}^{\prime} \frac{\rho(\vec{r}) \rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{2}
\end{equation*}
$$

$E_{i i}$ is the nuclei-nuclei Coulomb interaction, and $E_{X C}$ is the exchange correlation energy

Corresponding Kohn-Sham equation is (Singh eqs. 2.1.6-2.1.9)

$$
\begin{equation*}
\left(T+V_{e i}+V_{H}+V_{X C}\right) \varphi_{i}=\epsilon_{i} \varphi_{i} \tag{3}
\end{equation*}
$$

with

$$
\begin{gather*}
V_{H}(\vec{r})=e^{2} \int d \vec{r}^{\prime} \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{4}\\
V_{X C}(\vec{r})=\frac{\delta E_{X C}}{\delta \rho} \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
\rho=\sum_{o c c} \varphi_{i}^{*} \varphi_{i} \tag{6}
\end{equation*}
$$

To express the kinetic energy $T_{S, 0}$ in (1) using $\sum_{o c c} \epsilon_{i}$, equation (3) is multiplied from left by φ_{i}^{*}, integrated over \vec{r} and summed over occupied orbitals. The result is:

$$
\begin{equation*}
T_{S, 0}=\sum_{o c c} \epsilon_{i}-\int d \vec{r} \rho(\vec{r})\left[V_{e i}+V_{H}+V_{X C}\right] \tag{7}
\end{equation*}
$$

This expression is then substituted to (1). Taking into account that

$$
\begin{gather*}
E_{e i}=\int d \vec{r} \rho(\vec{r}) V_{e i} ; \quad E_{H}=\frac{1}{2} \int d \vec{r} \rho(\vec{r}) V_{H} \tag{8}\\
\tilde{E}_{0}=\sum_{o c c} \epsilon_{i}+E_{i i}+E_{X C}-\int d \vec{r} \rho(\vec{r})\left[\frac{1}{2} V_{H}+V_{X C}\right] \tag{9}
\end{gather*}
$$

which is the desired expression (Singh 2.2.2). The tilde upon E_{0} means that $T_{S, 0}$ was replaced by $\sum_{o c c} \epsilon_{i}$. The above derivation assumes the non-spin polarized calculation, but the generalization for the spin-polarized problems is straightforward and obvious.

II. LDA+U TOTAL ENERGY

First we assume (general case will be treated afterwards) that:

- Density matrix is diagonal.
- U is the same for all Coulomb interaction $\left(U_{i j} \equiv\right.$ $U)$ and J is the same for all exchange interaction $\left(J_{i j} \equiv J\right)$.

In the LDA +U methods the total energy may be written as:

$$
\begin{equation*}
E=E_{0}+E_{L D A+U} \tag{10}
\end{equation*}
$$

A. $\mathbf{L D A}+\mathbf{U}^{D F T}$

In the AMF (Around Mean Field) method of Czyzyk and Sawatzky [2] which is also the method we prefer now and call LDA $+\mathrm{U}^{D F T}$:

$$
\begin{equation*}
E_{L D A+U}=-\frac{U-J}{2} \sum_{i a t} \sum_{m=-l}^{l} \sum_{\sigma=\uparrow, \downarrow}\left(n_{m, \sigma}-\bar{n}_{\sigma}\right)^{2} \tag{11}
\end{equation*}
$$

where the first sum is over atoms selected for the LDA +U correction, $n_{m, \sigma}$ is occupation of the $|l, m, \sigma\rangle$ orbital, and

$$
\begin{equation*}
\bar{n}_{\sigma}=\frac{1}{2 l+1} \sum_{m=-l}^{l} n_{m, \sigma} \tag{12}
\end{equation*}
$$

is the average number of electrons in orbital with spin σ.
The potential which corresponds to $E_{L D A+U}$ may be written as

$$
\begin{equation*}
V_{L D A+U}=\sum_{i a t} \sum_{m, \sigma}|m, \sigma\rangle v_{m, \sigma}\langle m, \sigma| \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
v_{m, \sigma}=\frac{\partial E_{L D A+U}}{\partial n_{m, \sigma}}=-(U-J)\left(n_{m, \sigma}-\bar{n}_{\sigma}\right) \tag{14}
\end{equation*}
$$

Kohn-Sham equation is now:

$$
\begin{equation*}
\left(T+V_{e i}+V_{H}+V_{X C}+V_{L D A+U}\right) \varphi_{i}=\epsilon_{i} \varphi_{i} \tag{15}
\end{equation*}
$$

The kinetic energy in presence of the LDA +U potential is:

$$
\begin{equation*}
T_{S}=T_{S, 0}-\sum_{o c c}\left\langle\varphi_{i}\right| V_{L D A+U}\left|\varphi_{i}\right\rangle \tag{16}
\end{equation*}
$$

Taking into account that $V_{L D A+U}$ is nonzero only within the atomic spheres of selected atoms:
$T_{S}=T_{S, 0}-\sum_{m, \sigma} \sum_{o c c}\left|\left\langle\varphi_{i} \mid m, \sigma\right\rangle\right|^{2} v_{m, \sigma}=T_{S, 0}-\sum_{m, \sigma} n_{m, \sigma} v_{m, \sigma}$

The expression for the total energy is now:

$$
\begin{equation*}
\tilde{E}=\tilde{E}_{0}+E_{L D A+U}-\sum_{m, \sigma} n_{m, \sigma} v_{m, \sigma} \tag{18}
\end{equation*}
$$

Finally, inserting (11),(14) in (18) we get

$$
\begin{equation*}
\tilde{E}=\tilde{E}_{0}+\frac{U-J}{2} \sum_{m, \sigma}\left(n_{m, \sigma}^{2}-\bar{n}_{\sigma}^{2}\right) \tag{19}
\end{equation*}
$$

which is the same as:

$$
\begin{equation*}
\tilde{E}=\tilde{E}_{0}+\frac{U-J}{2} \sum_{m, \sigma}\left(n_{m, \sigma}-\bar{n}_{\sigma}\right)^{2} \tag{20}
\end{equation*}
$$

Note that the results is an analog of the double correction term for the Hartree energy (compare eqs. 3, 8). This is not surprising, as it is a consequence of the fact that Hartree energy is quadratic function of density and $E_{L D A+U}$ is quadratic in occupation numbers.

B. $\mathbf{L D A}+\mathbf{U}^{S I C}$

In the method we call LDA $+\mathrm{U}^{\text {SIC }}$ (Anisimov et al. [3], Solovyev et al. [4], Liechtenstein et al. [5], Shick et al. [6], also 'atomic limit' version of Czyzyk and Sawatzky [2]):

$$
\begin{equation*}
E_{L D A+U}=E^{e e}-E^{d c} \tag{21}
\end{equation*}
$$

where $E_{e e}$ is the mean field approximation to the electron-electron interaction in the spherically symmetrical atom, $E^{d c}$ is the double counting correction. Using the same approximations as in preceeding subsection:

$$
\begin{equation*}
E^{e e}=\frac{U}{2} N^{2}-\frac{J}{2} \sum_{\sigma} N_{\sigma}^{2}-\frac{U-J}{2} \sum_{m, \sigma} n_{m, \sigma}^{2} \tag{22}
\end{equation*}
$$

where N is the total number of electrons, N_{σ} is the total number of electrons with $\operatorname{spin} \sigma$:

$$
\begin{equation*}
N_{\sigma}=\sum_{m} n_{m, \sigma} ; \quad N=N_{\uparrow}+N_{\downarrow} . \tag{23}
\end{equation*}
$$

The double summation term is:

$$
\begin{equation*}
E^{d c}=\frac{U}{2} N(N-1)-\frac{J}{2} \sum_{\sigma} N_{\sigma}\left(N_{\sigma}-1\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{L D A+U}=\frac{U-J}{2}\left(N-\sum_{m, \sigma} n_{m, \sigma}^{2}\right) . \tag{25}
\end{equation*}
$$

additional potential, which corresponds to this energy is given by (13) with:

$$
\begin{equation*}
v_{m, \sigma}=\frac{U-J}{2}\left(1-2 n_{m, \sigma}\right) \tag{26}
\end{equation*}
$$

Proceeding as in the above subsection we get:

$$
\begin{equation*}
\tilde{E}=\tilde{E}_{0}+\frac{U-J}{2} \sum_{m, \sigma} n_{m, \sigma}^{2} \tag{27}
\end{equation*}
$$

If $U_{i j} \equiv U, J_{i j} \equiv J$ and $n_{i, j, \sigma} \equiv n_{i, \sigma} \delta_{i, j}$ is substituted in eq. 23 of Shick et al. [6], identical result is obtained.

C. LDA $+\mathbf{U}^{D F T}$ - general case

To simplify the equations we introduce the notation:

$$
\begin{equation*}
\tilde{n}_{m, m^{\prime}, \sigma}=n_{m, m^{\prime}, \sigma}-\bar{n}_{m, m, \sigma} \delta_{m, m^{\prime}} \tag{28}
\end{equation*}
$$

where $n_{m, m^{\prime}, \sigma}$ is (m, m^{\prime}) element of the occupation number matrix with spin $\sigma . E_{L D A+U}$ is then

$$
\begin{array}{r}
E_{L D A+U}=\frac{1}{2} \sum_{m_{1}, m_{2}, m_{3}, m_{4}}^{\sigma, \sigma^{\prime}} \tilde{n}_{m_{1}, m_{2}, \sigma} \tilde{n}_{m_{3}, m_{4}, \sigma^{\prime}} \\
\left\{\left\langle m_{1}, m_{3}\right| V_{e e}\left|m_{2}, m_{4}\right\rangle-\right. \\
\left.\left\langle m_{1}, m_{3}\right| V_{e e}\left|m_{4}, m_{2}\right\rangle \delta_{\sigma, \sigma^{\prime}}\right\} \tag{29}
\end{array}
$$

with

$$
\begin{array}{r}
\left\langle m_{1}, m_{3}\right| V_{e e}\left|m_{2}, m_{4}\right\rangle=\sum_{k} a_{k}\left(m_{1}, m_{2}, m_{3}, m_{4}\right) F_{k} ; \\
a_{k}\left(m_{1}, m_{2}, m_{3}, m_{4}\right)= \\
\frac{4 \pi}{2 k+1} \sum_{q=-k}^{k}\left\langle l m_{1}\right| Y_{k q}\left|l m_{2}\right\rangle\left\langle l m_{3}\right| Y_{k q}^{*}\left|l m_{4}\right\rangle \tag{30}
\end{array}
$$

The potential (14) now becomes a matrix with its (m, m^{\prime}) element:

$$
\begin{array}{r}
v_{m_{1}, m_{2}, \sigma}=\sum_{m_{3}, m_{4}, \sigma^{\prime}} \tilde{n}_{m_{3}, m_{4}, \sigma^{\prime}} \\
\left\{\left\langle m_{1}, m_{3}\right| V_{e e}\left|m_{2}, m_{4}\right\rangle-\left\langle m_{1}, m_{3}\right| V_{e e}\left|m_{4}, m_{2}\right\rangle \delta_{\sigma, \sigma^{\prime}}\right\} \tag{31}
\end{array}
$$

The expression for the kinetic energy is:

$$
\begin{equation*}
T_{S}=T_{S, 0}-\sum_{m_{1}, m_{2}, \sigma} v_{m_{1}, m_{2}, \sigma} \sum_{o c c}\left\langle\varphi_{i} \mid m_{1}, \sigma\right\rangle\left\langle m_{2}, \sigma \mid \varphi_{i}\right\rangle \tag{32}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\sum_{o c c}\left\langle\varphi_{i} \mid m_{1}, \sigma\right\rangle\left\langle m_{2}, \sigma \mid \varphi_{i}\right\rangle=n_{m_{2}, m_{1}, \sigma} \tag{33}
\end{equation*}
$$

the total energy, in which kinetic energy was replaced by the sum over eigenvalues, is rewritten as:

$$
\begin{equation*}
\tilde{E}=\tilde{E}_{0}+E_{L D A+U}-\sum_{\sigma} \operatorname{Tr}\left\{n_{\sigma} v_{\sigma}\right\} \tag{34}
\end{equation*}
$$

which is the final result to be used to calculate the total energy in the rotationally invariant $\mathrm{LDA}+\mathrm{U}^{D F T}$ scheme.

Expression (34) should be correct whatever is the form of the potential v_{σ}. As the trace is invariant with respect to the unitary transformation, the representation in which $n_{m, m^{\prime}, \sigma}$ is diagonal may be used, without lost of generality. Otherwise we follow Shick et al. [6] (SLP in what follows), as only in this paper the expression for \tilde{E} is given. To make connection with above sections we denote:

$$
\begin{array}{r}
U_{m m^{\prime}}=U+u_{m m^{\prime}} \\
J_{m m^{\prime}}=J+j_{m m^{\prime}}, m \neq j, \\
J_{m m^{\prime}}=U+j_{m m}, m=j, j_{m m}=u_{m m} \tag{35}
\end{array}
$$

The energy $E^{e e}$ (eq. 22, SLP eq. 2) is then

$$
\begin{equation*}
E^{e e}=\frac{1}{2} \sum_{m, m^{\prime}}^{\sigma, \sigma^{\prime}}\left\{U_{m m^{\prime}}-J_{m m^{\prime}} \delta_{\sigma, \sigma^{\prime}}\right\} n_{m, \sigma} n_{m^{\prime}, \sigma^{\prime}} \tag{36}
\end{equation*}
$$

Using (35) this becomes

$$
\begin{equation*}
E^{e e}=\frac{U}{2} N^{2}-\frac{J}{2} \sum_{\sigma} N_{\sigma}^{2}-\frac{U-J}{2} \sum_{m, \sigma} n_{m, \sigma}^{2}+e \tag{37}
\end{equation*}
$$

where e is given by ($e=0$, if $u_{m, m^{\prime}}=j_{m, m^{\prime}}=0$)

$$
\begin{equation*}
e=\frac{1}{2} \sum_{m, m^{\prime}}^{\sigma, \sigma^{\prime}}\left\{u_{m m^{\prime}}-j_{m m^{\prime}} \delta_{\sigma, \sigma^{\prime}}\right\} n_{m, \sigma} n_{m^{\prime}, \sigma^{\prime}} \tag{38}
\end{equation*}
$$

Double counting energy is still given by (24) so that

$$
\begin{equation*}
E^{e e}-E^{d c}=\frac{N}{2}(U-J)-\frac{U-J}{2} \sum_{m, \sigma} n_{m, \sigma}^{2}+e \tag{39}
\end{equation*}
$$

According to eqs. (23-24) of SLP the energy \tilde{E} is:

$$
\begin{equation*}
\tilde{E}=\tilde{E}_{0}-E^{e e}+E^{d c}+\frac{1}{2}(U-J) N \tag{40}
\end{equation*}
$$

inserting (39) we get

$$
\begin{equation*}
\tilde{E}=\tilde{E}_{0}+\frac{U-J}{2} \sum_{m, \sigma} n_{m, \sigma}^{2}-e \tag{41}
\end{equation*}
$$

Now we come to our derivation. The potential (SLP eq. 16) is:

$$
\begin{array}{r}
v_{m, \sigma}=\sum_{m^{\prime}, \sigma^{\prime}}\left(U_{m, m^{\prime}}-J_{m, m^{\prime}} \delta_{\sigma, \sigma^{\prime}}\right) n_{m^{\prime}, \sigma^{\prime}} \\
-U\left(N-\frac{1}{2}\right)+J\left(N_{\sigma}-\frac{1}{2}\right) \tag{42}
\end{array}
$$

Using the same notation as above

$$
\begin{equation*}
v_{m, \sigma}=(U-J)\left(\frac{1}{2}-n_{m, \sigma}\right)+w_{m, \sigma} \tag{43}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{m, \sigma}=\sum_{m^{\prime}, \sigma^{\prime}}\left(u_{m, m^{\prime}}-j_{m, m^{\prime}} \delta_{\sigma, \sigma^{\prime}}\right) n_{m^{\prime}, \sigma^{\prime}} \tag{44}
\end{equation*}
$$

trace of $\left(v_{\sigma} n_{\sigma}\right)$ is

$$
\begin{equation*}
\operatorname{Tr}\left(v_{\sigma} n_{\sigma}\right)=(U-J)\left(\frac{1}{2} N_{\sigma}-\sum_{m} n_{m, \sigma}^{2}\right)+\operatorname{Tr}\left(w_{\sigma} n_{\sigma}\right) \tag{45}
\end{equation*}
$$

So that using (34) we get the result

$$
\begin{array}{r}
\tilde{E}=\tilde{E}_{0}+\frac{N}{2}(U-J) \\
-\frac{U-J}{2} \sum_{m, \sigma} n_{m, \sigma}^{2}+e \\
-\frac{N}{2}(U-J)+(U-J) \sum_{m, \sigma} n_{m, \sigma}^{2} \tag{46}\\
-\sum_{\sigma} \operatorname{Tr}\left(w_{\sigma} n_{\sigma}\right)
\end{array}
$$

which reduces to

$$
\begin{equation*}
\tilde{E}=\tilde{E}_{0}+\frac{U-J}{2} \sum_{m, \sigma} n_{m, \sigma}^{2}+e-\sum_{\sigma} \operatorname{Tr}\left(w_{\sigma} n_{\sigma}\right) \tag{47}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
e=2 \sum_{\sigma} \operatorname{Tr}\left(w_{\sigma} n_{\sigma}\right) \tag{48}
\end{equation*}
$$

we get the same result as SLP (see eq. 41, SLP eq. 2324).

III. CONCLUSION

To calculate the total energy in the LDA +U method, in case the sum over eigenvalues is used instead of the kinetic energy, we recomend to use the equation:

$$
\begin{equation*}
\tilde{E}=\tilde{E}_{0}+E_{L D A+U}-\sum_{\sigma} \operatorname{Tr}\left\{n_{\sigma} v_{\sigma}\right\} \tag{49}
\end{equation*}
$$

This formula holds for any LDA +U potential which may be written in the form

$$
\begin{equation*}
V_{L D A+U}=\sum_{i a t} \sum_{m, m^{\prime} \sigma}|m, \sigma\rangle v_{m, m^{\prime}, \sigma}\left\langle m^{\prime}, \sigma\right|, \tag{50}
\end{equation*}
$$

in particular for both 'DFT' and 'SIC' methods. Moreover, it is rotationally invariant and may be easily implemented.
[1] D.J. Singh, Planewaves, pseudopotentials and the LAPW method (Kluwer Academic, Dordrecht, 1994).
[2] M.T. Czyzyk and G.A. Sawatzky, Phys. Rev. B 49, 14211 (1994).
[3] V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).
[4] I.V. Solovyev, P.H. Dederichs, and V.I. Anisimov, Phys. Rev. B 50, 16861 (1994).
[5] A.I. Liechtenstein, V.I. Anisimov, and J. Zaanen, Phys. Rev. B 52, 5467 (1995).
[6] A.B. Shick, A.I. Liechtenstein, and W.E. Pickett, Phys. Rev. B 60, 10763 (1999).

