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Introduction 
 
With this version of the mixer (10.1, Mango+ and later), a number of linear constraints on the 
atomic positions have been included. These allow for a large number of different ways to 
manipulate structures ranging from calculation of Transition States to other, symmetry constraints 
and (perhaps) even for phonon or Berry phase calculations. These notes will first describe how to 
use them, then more background and options. This document, and the code are beta+ versions. 
 
Note that with the conversion to a full internal control of parameters with version 10.6.9 (Fall 
2020) the functioning of these constraints has changed. The recommended and default version is 
now WALK with a bound of 20 mau per step (via TRUST). 

Use 
 
The code requires a file case.constraint to provide information. It will then blindly obey what is 
present, so a little care is needed. (In the future scripts could be generated to automatically generate 
these files for different types of problems.) All the constraints are of the form Ax=b, where A is a 
matrix for each constraint, x are the non-equivalent atomic positions and b is a scalar. The code 
calculates the minimum-norm shift of the atomic positions that would satisfy the constraints, then 
adds this to the pseudo-forces multiplied by a scalar which is either fixed or automatically. A full 
density and atomic positions optimization is then performed, with the end result close to obeying 
the constraints. 
 
Three forms for the input are available. The first two are "simple" constraints which are specified 
by the matrix A, the third has the equivalent form that corresponds to displacing one or more 
atoms relative to a reference structure. 
 
The different modes are switched based upon the first line of case.constraint : 
 
NUMEQ SCALE FCONST    Number of constraints (integer) and User Scale  
                               then constraint strength      Free Format 
 
If NUMEQ is less than 100 the complete matrix A is needed (free format), for instance 
AX1 AY1 AZ1 x, y, z components for atom 1 of the matrix A 
AX2 AY2 AZ2  x, y, z components for atom 2 of the matrix A 
... 
b   value of b  
 
for each constraint.  
 
If NUMEQ is more than 100, 100 (or a multiple of it) is subtracted and a Sparse input is used for 
each constraint, for instance to constrain the combined positions of atoms 1 and 4: 
 
NVALS                      Entries for this constraint (integer) 
ATOM1 AX1 AY1 AZ1        Integer for atom 1, then the three matrix values 
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ATOM4 AX4 AY4 AZ4 Integer for atom 4, then the three matrix values 
b    Value of the constant b for this constraint 
 
As an example, an input file case.constraint of form 
201 1 0.1 
1 
3 0 0 1 
0.589 
 
will apply a constraint that the z co-ordinate of atom 3 is 0.589. A second example is a file 
 
201 1 0.1 
1 
3 0 1 -1 
0.0 
 
Which will optimize the atomic positions with the constraint that the sum of the y and z 
coordinates of atom 3 are the same. 
 
If NUMEQ > 1000, the calculation is referenced to an existing set of atomic positions and a 
vector displacements. The format is 
 
Fraction                 Free Format, fraction to move along the vector 
Number_Vector_1     Integer, free format, the number of components 
Filename  Path of the reference positions 
Number_Pos_1          Integer, free format, number of vector displacements 
N1 X1 Y1 Z1             Atom N1, and components X1, Y1, Z1 of vector. 
                         This is repeated Number_Vector_1 time 
 
As a specific example, the file: 
 
1002 1 0.1                   NUMEQ SCALE, FCONST 
0.125                           Fraction to Move 
/home/ldm/Mixing/NEB/Model3c/Struct1a/Struct1a.struct 
1                                  Number of atoms to constraint 
1 0.0 -0.5 0.0               Vector displacement for this atom 
 
will take the positions from Struct1a, and perform a constrained optimization forcing a 
displacement of the y co-ordinate of atom 1 to move 0.125 along the vector [0,-0.5,0]. 
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Under The Hood 
 
If you just want to get started skip this section. However, you may be confused so reading it is 
recommended, and also the later section on corrections. 
 
Earlier version of Wien2k (and other DFT codes) handle constraints by fixing atomic positions. 
While this can work it has some mathematical problems. Fixing a position is equivalent to 
minimizing a problem over all atomic positions with an additional infinitely large penalty function 
for how much one or more of these deviates from the constraint. It is know that large penalty 
functions are ill-conditioned, and may get stuck in local minima or not converge. An alternative 
approach is to use Lagrange multipliers, but then one has to work out what value to use for these. 
The idea is to apply an extra fictitious force on target atoms to move them towards the desired final 
position. 
 
In the first version of this code a number of different Lagrangian methods were used. With the 
transition to a more complete algorithm control of parameters in version 10.6.9 a much simpler 
approach now appears to be significantly better. This applies a fictitious force with a bound set by 
a TRUST region control for how much movement there should be (default 20 mau per iteration). 
If there is not enough movement towards the desired endpoint the force is increased; if there is too 
much it is decreased. This mode, WALK is now the default. 
 
A standard alternative is to use what is called an Augmented Lagrangian method which combines 
Lagrange multipliers with a much weaker penalty function. (Both standard Lagrangian and 
Augmented are implemented.) These are well established methods for updating the Lagrange 
multiplier, and it is known that the method converges for relatively small penalty functions. This 
therefore allows the algorithm to escape local problems and converge much better – it is much 
better conditioned. (As a caveat, it may take too large a step.) The standard approach for 
minimizing, for instance, some function A(x) with a constraint C(x)=0, is to minimize the 
Lagrangian 
 
 𝐿 𝑥 𝐴 𝑥 𝜆𝐶 𝑥 𝜂/2𝐶 𝑥         (1) 

where 𝜆 is the Lagrange multiplier and 𝜂 is the strength of the penalty function, here a quadratic 
form. At each step during minimizing L(x) an additional gradient term 

  𝜆 𝜂𝐶 𝑥 𝜕𝐶 𝑥 /𝜕𝑥         (2) 

is added for each constraint. The conventional approach is to minimize in iteration “k” L(x) for a 
fixed value of the Lagrange multiplier 𝜆 , then update it for the next step of iterations from the 
value 𝜆  to a new one 𝜆  using 

𝜆 𝜆 𝜂𝐶 𝑥         (3) 

and repeat the minimization of L(x) with this new value. This is similar to converging the density 
for some specific set of atomic positions, changing these positions then reconverging. This is what 
is done with PORT in mini, and many other DFT codes.  
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The speed of the convergence with PORT is controlled mainly by the product of the number of 
eigenvalue clusters of the dielectric matrix and the force matrix (with a weaker dependence on the 
width of the clusters). The MSR1a algorithm converges (mixes) the atomic positions and density 
at the same time. Its speed is controlled by the number (and width) of the eigenvalue clusters of 
the joint dielectric and force matrix, which is typically much smaller than the product. In this code, 
similar to MSR1a, the Lagrangian variable is treated as a variable (i.e. similar to a single density 
value), 𝜂𝐶 𝑥  as a residue (gradient) and they are mixed at the same time as everything else. Since 
this is only one (and perhaps in the future a few) extra variable it makes almost no difference to 
the speed of convergence. 

A little additional care is needed with the constraints C(x). The simplest form is a linear one such 
as x-0.5 but this has disadvantages as it can be very large far from the constraint and end up 
dominating the mixing. It is not hard to show that without changing the form, one can multiply by 
some function to damp the value far from the solution. A few different forms are optional. 

The algorithm performs this simultaneous mixing of the density, atomic positions and the 
Lagrange multiplier. In addition to the conventional forces, it will also print out the pseudo-forces 
which are the combination of the conventional ones and the additional gradient term from equation 
(2). The convergence is monitored by the combination of these pseudo-forces and the movement, 
and when both are small enough it will stop and switch to a final MSR1 step. (Currently the 
deviation of the constraint is not used as a termination condition.) The constraint will, in general, 
not be exactly satisfied – but this is fine. If needed an additional iteration can be done with it 
satisfied, or the magnitude of the constant𝜂, the strength of the penalty function term (FCONST, 
typical value 0.1) increased. 

The algorithm will stay fairly close to the Born Oppenheimer surface (BOS), and will approach 
the constraint as it converges. However, it may wander away from the constraint for a while and 
appear to be doing strange things. These are almost certainly not bugs or problems and user 
intervention is probably inappropriate. For instance, at some stage the algorithm may have 
wandered a bit too far from the BOS and be adjusting the density variable and/or other atomic 
positions, and moving further from the constraint, or appear to be oscillating. This is fine. 

One final comment concerns the constant 𝜂, the strength of the penalty function term (the input 
term FCONST, typical value 0.1). Far from the solution damping helps, near the solution it can 
be increased but it should never exceed 1.0 as this can lead to divergence. It may be that a smaller 
value is needed to avoid Ghost Bands for poorly conditioned problems, but this will take longer 
(more iterations). Alternatively use the Lagrangian method without augmentation. 

IMPORTANT. The indications are that the MSR1a algorithm, and to a weaker extent MSECa, 
both will tend towards global fixed-points of the density and atomic positions only weakly guided 
by the forces. It can happen (with coding errors) that the atomic positions match the constraints, 
the density is converged by the pseudo-forces are large. Oddly enough this is “correct”, but there 
is probably a coding error as the pseudo-forces should be small. If this occurs please let me know. 
 
WARNING: Be aware that you are not calculating a trajectory on the “potential energy surface”. 
Instead you are calculating a potential energy surface with one constraint. For instance, there is no 
reason that a pincer calculation and one with a single atom constraint will lead to identical results 
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except at a local minimum or a Transition State where all forces should be zero. Please be careful 
how you think about this. 

Options 
 
Following these lines are a number of options, which matter. More than one can be included, the 
latest taking precedence in case of conflicts. The first set control the mode used, with WALK 
and TRUST 20 the default. 
 
WALK 

This is the default fail-safe method, which is slow and might not converge. It increments the 
effective force applied as needed until the final position is reached. A value of 0.1 for FCONST 
is reasonable, larger values such as 0.25 will help cases which won’t converge. If you are restarting 
from a converged calculation close to the maximum, a larger value of SCALE might help. 

TRUST XX 

This applies an upper limit of XX mau for the displacement in a given step, default 20. It is useful 
in WALK and other modes to avoid too large movements. It is on by default. 

AUGMENT 
 
This applies an Augmented Lagrangian where the actual Lagrangian constant is mixed, rather than 
being incremented as is done for optimization problems. Some care is needed with FCONST, and 
I recommend a value of 0.05-0.1 when the starting point is far from the desired end point, a larger 
number such as 0.5 when it is close. A value of 0.9 or large will produce a warning as for 
mathematical reasons (over-relaxation) they are likely to lead to problems. Negative values can be 
used, they slow the algorithm down (under-relaxation). 

LAGRANGIAN 
 
This implements a simple Lagrangian, as against an Augmented Lagrangian. It works, and is often 
more gentle, albeit slower. 
 
RESTART 
 
This is needed if you are restarting from a previous calculation, and want to set the value of the 
Lagrange multiplier so the pseudo-forces are small initially. For instance, you might be tightening 
the constraint and moving from the previous value to a new one. 
 
MIN 
 
This is the default. It will typically start with a fairly small pseudo-force, and then increase it. It is 
needed, for instance, if the constraint is applied to the atomic densities from dstart. 



7 
 

Additional Corrections 
 

In addition to the above, some options for 
corrections are used and are very important. 
To explain this, consider that the problem of 
interest is to find the transition state for an 
atom on a surface by moving it as illustrated 
to the right. Because moving an atom away 
from equilibrium is equivalent to applying a 
Force to it, this will have the effect of 
shearing the underlying bulk. Because of 
this shear, the behavior when you start from 

an “initial state” and move towards the “final 
state” will be different from going the other 
way – the system will have hysteresis. This is 
shown for a specific example in the Figure 
below and to the left. The blue and orange 
show the energies starting from x=0 and x=0.5 
for a target atom, and the yellow and grey the 
corresponding Forces after full minimization 
of all other co-ordinates. 

In order to avoid this the unbalanced forces 
and/or moments have to be cancelled. Shown 
to the right is cancellation of the moment by 
applying a simple shear to oppose it. This 

eliminates the hysteresis except very close to the Transition State, when an interesting 
phenomenon occurs. The actual Transition State appears to be a fixed-point attractor, so if by 
chance the end point is very close, the algorithm 
can terminate very close to it. This is not 
guaranteed to always occur, but has a reasonably 
high probability. 

Corrections that are currently in the code are: 

MOMENTX 

Cancels moments normal to the x-axis, taking an 
origin of x=0. If an additional line DISPLACE is 
present then an origin of x=0.5 will be used. 

MOMENTY or MOMENTZ 

The same, for the y-axis or z-axis. 
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Note Full rotation compensation has not been implemented yet, it would not be hard to add if 
needed. 

DRIFTX 

Cancels any net applied force along the x-axis. This has not been tested. 

DRIFTY or DRIFTZ 

The same for the y-axis or z-axis. Multiple drift corrections are possible. 

An example of a complete “working” case.constraint file is: 

1002 1 0.1 
0.125 
/home/ldm/Mixing/NEB/Model3c/Struct1a/Struct1a.struct 
1 
1 0.0 -0.5 0.0 
MOMENTY 
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How to Use  
 
Exactly how to use the code to find Transition States (TS) and in other cases will almost certainly 
evolve with time, so these ideas are suggestions only. For TS I will assume that the Initial and 
Final states have already been determined, and a key atom that changes has been identified and 
the relevant co-ordinate determined. A method is: 

1) Setup a number of cases stepping from the Initial to the Final. Not too many, not too few; 
probably 8 is enough. 

2) Calculate from the end points towards the middle (e.g. 4 from the Initial, 4 from the Final) 
with an appropriate correction. I would probably do these in parallel, although an argument 
could be made for doing them sequentially. In some cases a displacement of a target atom 
may be best, in others a pincer movement to change the distance between two atoms. 

3) Pick, if possible, options to correct for unbalanced forces. 
4) Check for hysteresis. 
5) Plot the (converged) energies and the forces on the target atom. 
6) Create a scatter plot of the energy and (perhaps) forces during the run(s). This sometimes 

shows up features. 
7) Create a scatter plot of the x,y (or x,z; y,z) coordinates during the run(s) – 3D would be 

nice. 
8) Hopefully the TS will now be clear. Bracket somehow moving closer – and there is a strong 

chance that you will hit the TS because it can be a weak attractor. 
9) Perhaps (very perhaps) from a point close to the TS use MSECa. It might well converge 

(it should) to the TS. MSR1a probably won’t, although you might be lucky! 
10) In the end, do a “mini-phonon” for the target atom alone (without correction probably) 

about the TS – I don’t think a full phonon of all atoms is needed. 
 

WARNING: Be aware that you are not calculating a trajectory on the “potential energy surface”. 
Instead you are calculating a potential energy surface with one constraint. For instance, there is no 
reason that a pincer calculation and one with a single atom constraint will lead to identical results 
except at a local minimum or a Transition State where all forces should be zero. Please be careful 
how you think about this. 

 
Other Comments 

a. There may be something odd/wrong with using a displacement which is not just x, y or z 
only. I have not tested a case to know exactly. 

b. Compensating for rotation might be relevant. 
c. Only tested to date for cases with inversion symmetry; drift may be an issue as the 

constraints may break (or conflict with) the drift correction already in MSR1a. 
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Monitor Terms (for grep) 
 

Several terms can be used to monitor the progress and look for problems. Some are only active if 
VERBOSE is included in case.inm. Most of these are after “User defined constraints 
detected” in case.scfm 

Discrepancy for Atom Estimate of distance/gradient to constraint 

Vector Residue  Estimate of RMS distance for all relevant atoms 

Raw Force Components Relevant Forces 

:Lagrange Multiplier Value of the Lagrange Multiplier, worth monitoring 

 

VERBOSE ONLY 

Mixed Value and Residue Terms being used in the mixing 

Next Lagrangian  Value after mixing, that will be used in the next iteration 

 

SPECIFIC Modes 

Walk Mode Only 

 :LAG XXX  Information about how Lagrangian term is increasing or decreasing 

 Change Vector Information about distance from constraint 

Augmented Lagrangian 

 Unit Check  Sanity check on internal parameters 

 

Additional Monitoring 

It may be useful to use a script such as: 

#!/bin/bash 
grep :FGL$1 *.scf | cut -c 1-7,32-78 | tail -20 > tmp_tmp1 
grep :FGC$1 *.scf | cut -c 1-7,32-78 | tail -20 > tmp_tmp2 
paste tmp_tmp1 tmp_tmp2  
rm tmp_tmp1 tmp_tmp2 
 
to monitor both the pseudo-forces for a target atom, and the non self-consistent forces. 


