
Optimization Notes 
 
L. D. Marks, November 2004 with additions by S.Cottenier and P. Blaha 
Updated by L. D. Marks, October 2020 
 

Preface: Optimization versions in Wien2k 
 
There are two methods of optimizing the internal atomic positions (i.e. those within the unit cell), the 
older PORT routine and the newer MSR1a version of the mixer. In most cases the newer MSR1a code 
is faster and recommended. It is activated by adding the flag “-min” to any runXX_lapw calculation, 
where XX can be any of nothing, “sp” for spin polarized etc. More details about the use of MSR1a can 
be found in the separate pdf within the textbook/notes page of Wien2k, and also in the SRC_mixer 
directory of each release. In general MSR1a is significantly faster than PORT. 
 
The exception is when a simultaneous lattice parameter optimization is being performed which 
involves a large number of very similar calculations. This is because each calculation adds information 
to an estimate of the second-derivative matrix (Hessian), so the minimization can become fast only 
requiring a few steps after some have already been calculated. I 
 
Another possible reason to use the PORT version is that it will produce the files that the code 
eigenhess uses to provide estimates of the phonon spectra and also information about possible unstable 
modes; further details are given in the user guide. 
 
There are similarities between the two different approaches. Particularly for large structures such as 
supercells with impurities and surfaces it is appropriate to first perform an approximate calculation with 
reduced RKMAX and k-mesh and when these are converged improve the parameters. In many 
(perhaps most) cases the internal atomic positions are not that sensitive to convergence parameters. 
One caveat is that in some cases shifting the k-mesh seems to lead to slightly inaccurate forces and 
positions, for reasons which are not fully understood. 
 
Both methods also are faster if more symmetry is used, particularly inversion symmetry. While there 
are options for fixing atomic positions and applying some constraints in both methods, unless you have 
a good reason do not do this. Contrary to popular belief, the speed of an optimization does not depend 
upon the number of variables, instead it depends upon the number of clusters of eigenvalues of the 
force matrix and to some extent upon the width of these clusters. Fixing atomic positions may not 
reduce the number of eigenvalue clusters, and in general is poor physics. 
 
Most optimization methods only find local minima, so be aware that this is what both PORT and 
MSR1a do. It may be that there is a lower energy with a different symmetry or spin state. At the 
current moment there is no code in Wien2k which can do a good global optimization – it has to be done 
by hand. 
 
The rest of this document refers only to the PORT code. 
 
 
  



1. Introduction to the PORT method 
 
Most of the more complicated structures have free internal structural parameters, which can either be 
taken from experiment or optimized using the calculated forces on the nuclei. An example of a 
minimization is provided in the User Guide for TiO2. The shell script min_lapw is provided which, 
together with the program mini, automatically determines the equilibrium position of all individual 
atoms (obeying the symmetry constraints of the space group in the case.struct file). 
 
A typical sequence of commands for an optimization of the internal positions would look like: 
* Generate struct file 
* init lapw 
* run lapw -fc 1 [other options] (this may take some time) 
* Inspect the scf file whether you have significant forces (usually at least .gt. 5 

mRy/bohr), otherwise you are more or less at the optimal positions 
* min lapw [options] (this may take some time) 
 
Without -NI switch min_lapw performs an initialization first: 
* generates default case.inM (if not present); 
* removes ”histories” (case.broyd*, case.tmpM) if present; 
* copies .min_hess to .minrestart (if present from previous min). 
 
When case.scf is not present, an scf-cycle will be performed first, otherwise the corresponding forces 
are extracted into case.finM and mini generates a new case.struct with modified atomic positions. 
The previous step is saved under case_1/2/3.... Then a new scf-cycle is executed and this loop 
continues until convergence (default: forces below 2mRy/bohr) is reached. The last iteration of each 
geometry step is appended to case.scf_mini, so that this file contains the complete history of the 
minimization and can be used to monitor the progress (grep :ENE *mini; or :FORxxx ...). 
 
Note, mini requires an input file case.inM which is created automatically and MUST NOT be 
changed while min_lapw is running (except the force tolerance, which terminates the optimization). 
The PORT minimization method, a reverse-communication trust-region Quasi-Newton method from 
the Port library seems to be stable, efficient and does not depend too much on the users input. The 
PORT option also produces a file .min_hess, which contains the (approximate) Hessian matrix 
(lower-triangle Cholesky factor) If you restart a minimization with different k-points, RMT, RKmax, 
... or do a similar calculation (eg. for a different volume, ...) it will be copied to .minrestart (unless 
the option -nohess is specified), so that you start with a reasonable approximation for the Hessian.  
 
When using PORT you may also want to check its progress using grep –e :LABEL case.outputM, 
where :LABEL can be any of 
:ENE (should decrease overall, but can go up for single steps), 
:GRAD (should also go down, but could sometimes also go up for some time as long as the energy 
still decreases), 
:MIN (provides a condensed summary of the progress), 
:WARN (may indicate a problem), 
:DD (provides information about the step sizes and mode used. 
 
Some general explanations: 
 
1. The algorithm takes steps along what it considers are good directions (using some internal logic), 



provided that these steps are smaller than what is called the trust-region radius. After a good step (e.g. 
large energy decrease) it expands the trust-region; after a bad one it reduces it. Sometimes it will try 
too large a step then have to reduce it, so the energy does not always go down. You can see this by 
using ”grep –e :DD” and “grep –e :MIN case.outputM” . 
 
2. A grep on :MIN gives a condensed progress output, in which the most significant terms are E 
(energy in some rescaled units), RELDF (last energy reduction), PRELDF (what the algorithm 
predicted for the step), RELDX (RMS change in positions in Angstroms) and NPRELDF (predicted 
change in next cycle). Near the solution RELDF and RELDX should both become small. However, 
sometimes you can have soft modes in your structure in which case RELDX will take a long time 
before it becomes small. 
 
3. A warning that the step was reduced due to overlapping spheres if it happens only once (or twice) 
is not important; the algorithm tested too large a step. However, if it occurs many times it may 
indicate that the RMT’s are too big. 
 
4. A warning ”CURVATURE CONDITION FAILED” indicates that you are still some distance 
from the minimum, and the Hessian is changing a lot. If you see many of these, it may be that the 
forces and energy are not consistent. For instance, with a too small an RKMAX, there can be an error 
of 10 mRy/bohr in the forces. 
 
The main control file is case.inM which has the format: 
 
---------------- top of file: case.inM -------------------- 
PORT 2.0 (PORT tolf (a4,f5.2)) 1.0 
1.0 1.0 3.0 ( 1..3:DELTA, eta) 
1.0 1.0 1.0 6.0       ( 1..3=0 constraint) 
------------------- bottom of file ------------------------ 
 
Interpretive comments on this file are as follows. 
line 1: format(a4,f5.2) 
MINMOD Modus of the calculation, here PORT 
TOLF Force tolerance, geometry optimization will stop when all forces are below TOLF. 
 
line 2: free format 
DELTA(1-3) Precondition parameters which primarily influence the size of the first geometry step. 
Within the code the x,y,z forces are multiplied by DELTA(1), DELTA(2), DELTA(3) respectively 
before being used. DELTA(i) = 0 will therefore constrain the corresponding i-th coordinate. The deltas 
correspond to the global coordinates (the same as the positions in case.struct and the forces :FGL 
from case.scf). 
ETA: Bond-order parameter: should be set approximately to the number of nearest neighbors (or left 
at 1.). The diagonal elements of the initial Hessian approximation (if 
.minrestart is not present) for each atom are multiplied by ETA. 
>>> line 2: must be repeated for every atom 
 
2. Optimization Method 
 
While there is no need to understand in detail the workings of the port optimization algorithm in order 
to use it, some understanding is needed in order to exploit it to its fullest potential. For this, a very 



brief introduction to some elements of optimization. 
 
Almost all optimization codes use what is called a quadratic approximation, namely they expand the 
energy in a form 
 

                    [1] 

where E* is the predicted energy for a step s from the current point, E and g are the energy and 
gradient (negative of the force) calculated at the current point and H is the Hessian matrix. Different 
algorithm use different approaches to the Hessian matrix. The most primitive is steepest descent, 
which takes H as the unitary matrix so will take a step along the direction of the force. Better 
algorithms such as conjugant gradient methods use some information about the previous step. By far 
and away the most common method is to exploit the Hessian, either by directly computing it (very 
CPU expensive for codes such as Wien) or to create an estimate of it that improves as the calculation 
proceeds. The most successful approach is the Broyden-Fletcher-Goldberg-Shamo (BFGS) update. If 
we take a step sk, the gradient will change from gk at the previous point to gk+1 at the new point, and 
we can write 

g k  g k 1  y k H k s k                  [2] 

 
In principle there are many ways to exploit this information. The method used in BFGS is to update the 
Hessian for the next step via: 
 

H k 1  H k  H k                  [3] 

 
The procedure is then to solve for 
 

             [4] 
  

move by sk+1, recalculate the gradient, update the Hessian H and iterate. Often the first estimate for the 
Hessian is the unitary matrix, although it does not have to be and the better the initial guess is, the 
faster the algorithm will converge. Often the estimate of the Hessian will change rather a lot during the 
calculation, and at some locations can be rather bad. The power of the BFGS method is that experience 
over the last decade has indicated that in most cases it will correct itself rather quickly, and is therefore 
rather robust. 
 
However, some care is needed. Near the minimum the Hessian must be positive definite. Away from 
the minimum the true Hessian does not have to be. Unfortunately, if it is not positive definite the 
solution to equation [4] may be an uphill direction and the update procedure can go badly wrong. 
Going back to equation 2, we can rephrase this as: 
 

           [5] 
 

If H is positive definite, the right-hand side is positive so . If this is not true precautions 
have to be taken to prevent the Hessian from going bad; this is flagged in mini as a warning for the 
user during an optimization run. There is also the possibility that  becomes small leading to ill-



conditioning; this is also flagged as a warning. 
 
One other point merits mention. Moving by a full step sk+1 is often not appropriate; it may be too large. 
One approach would be to search along the direction of sk+1, but this can be inefficient since it would 
involve many calculations along a single directions. An alternative approach is to use what is called a 
Trust-Region method. Here one calculates the best step for a quadratic model with the current 
approximation for the Hessian with the constraint that |sk+1| < R, where R is the trust region radius. If a 
very good step is chosen, the current approximation for the Hessian is good so it is safe to increase the 
radius; if the step is poor (for instance the energy increases) the radius is decreased. One can see how 
the Trust-Region is changing by doing “grep –e :DD case.outputM” where this information is 
provided. Compared to a line search method this approach does not give such a good improvement per 
direction, but often will be faster in terms of the nett improvement per function evaluation (run_lapw). 
The PORT routines go one step further and use one of a number of variants of the trust-region 
approach, switching between them depending upon what it thinks is most likely to give the best results. 
 
3. Implementation within Wien2k 
 
The optimization routines have been implemented in Wien2k using reverse communication, 
exploiting the existing driver drmng within the port library with a couple of minor modifications 
primarily to obtain output more consistent with Wien2k conventions. When called, the routine will 
first generate an initial estimate of the Hessian based upon the multiplicity as well as the bond-order 
information provided by the user, or if the file .minrestart is available it will read in an initial 
estimate from this file. It will then call drmng which decides what to do next. The subroutine drmng 
will then process some information and return to the subroutine haupt in mini seeking either energy or 
derivative (force) information. The subroutine haupt then looks to see if this information is already 
available (stored from a previous calculation), and if it is will then call drmng again with this 
information. (Then drmng will do some more work, and return for more information) If the 
information requested by drmng is not available, haupt and mini create a new case.struct file and 
returns control back to the min_lapw script to process a new calculation with different atomic 
positions. The subroutine haupt will also print out some information, store the current value of the 
Cholesky factor of the Hessian approximation and process termination flags if appropriate. 
 
Rather than using the full Hessian itself, the routine works with the Cholesky factorization. This 
automatically helps ensure that the Hessian remains positive definite, and is simpler in terms of 
calculating the inverse to obtain the direction along which to move the atoms. At each cycle the 
Cholesky factorization is written to a file .min_hess which can be inspected. As a caveat, the BFGS 
algorithm calculates an approximation to the Hessian, not the true Hessian so you cannot use it to, for 
instance, calcuate accurate phonon spectra. 
 
 
4. Some suggestions about how to optimize a structure within your lifetime 
 
a) Start with a calculation that is fast, but not necessarily that accurate. You can save a lot of CPU 
time by using a minimal RKMAX and a smaller number of k-points. How small depends a lot on 
your problem, often an RKMAX of 5 is good enough and for larger calculations (e.g. surfaces) only 
5-10 unique k-points can be OK, sometimes just one (gamma point) initially. Some reasonable 
numbers for an approximate calculation are: 
 



Elements H sp d f 
RKMAX= 2.5-3.5    4.5-5    5.5-6 6.5-7 

 
b) Don’t overdo the force convergence initially, perhaps only use –fc 5.0 if you are far from a 
minimum. 
 

c) As you move closer to the minimum, increase your tolerance of the forces and also improve your 
calculation parameters. When you increase RKMAX or other parameters, copy .min_hess to 
.minrestart then delete the old case.tmpM and case.finM files since there is normally a change in the 
absolute energy. The Hessian estimate that you have previously calculated is probably better than the default. 
 
d) The closer you want to converge the structure, the more care will be required in terms of the 
RKMAX that you are using, the number of k-points, as well as ensuring that you do not have leakage 
of core electrons out of the atomic spheres. 
 
e) Be careful about using larger Gaussian or Temperature smearing. While these can improve the 
convergence within a single scf iteration, in some cases they might produce small inconsistencies 
between the energies and forces (at the 1-2 mRyd/bohr level). Use TEMPS (not TEMP). 
 
f) min_lapw will copy .min_hess to .minrestart before it starts. In case you have troubles with the 
minimization and suspect that the previous approximate Hessian could be the reason, you may want to 
delete these two files (usually they will speed up similar minimization runs). 
 
 
5. Minimizing atomic positions and lattice constants/angles simultaneously 
 
If one wants to know the theoretically predicted structure of a material within a given space group, 
e.g. TiO2 in space group 136 (P4_2/mnm), then all free parameters have to be varied. For the TiO2 

example, they are the a and c lattice constants, and the x-value for the O-position. This means that in 
principle you should find the absolute minimum of the total energy :ENE as a function of 3 variables 
(a, c, O-x). 
 
Unfortunately, WIEN2k does not have a minimizer that can find this directly. The min_lapw script 
(mini program) is an efficient way of finding the energy minimum as a function of the internal 
degrees of freedom (O-x for TiO2). The lattice constants (and angles, if relevant) still have to be 
scanned in a systematic way, a procedure that takes many steps. For each set of lattice constants and 
angles, min_lapw has to be executed to find the optimized internal coordinates. 
 
Preparing a series of case.struct files with the lattice constants/angles that one wants to scan, can often 
be done by the optimize program. Running all calculations automatically can be done by making 
suitable changes to the optimize.job script that it produces. 
 
Below are two examples of optimize.job scripts, which have been created by “x optimize”, but need 
to be modified slightly by the user (you may use additional parameters like –p, -in1orig, -in1new 5, 
different convergence criteria, … or runsp_lapw). 
 
1) Calculate the total energy for 5 different volumes of a structure with fixed A:B:C ratio, and 
optimize the internal coordinates for each volume. The 5 different lattice constants are put in 5 
previously prepared structure files, of which the headers have to be listed in the optimize.job script : 



 

#!/bin/csh –f 
# 
# Loop over different volumes calculated by optimize 
foreach i ( \ 

case_vol__4.0 \  
case_vol__2.0 \  
case_vol__0.0 \  
case_vol__-2.0 \  
case_vol__-4.0 \ 

) 
Cp $i.struct case.struct 
# Perform an optimization of the internal parameters min_lapw –
I -j "run_lapw -I -fc 1. -renorm -i 40"  
set stat = $status 
if ($stat) then 

echo "ERROR status in" $i  
exit 1 

endif  
save_lapw $i 
end 
 
After successfully running this script, you have to inspect the total energies of all 5 saved 
*.scf files, and determine from this information the optimal volume (eplot_lapw or w2web). Together 
with the optimized internal positions for that volume, you have a theoretical prediction for the 
structure of this material. 
 
2) The same as 1), but now scan 5 different volumes, and for each volume calculate a series of c/a 
ratios with that volume fixed. Perform the following steps: 
 
cp case.struct case_original.struct 
x optimize         (generate structures with 5 different c/a ratios; -4,-2,0,2,4) 
cp optimize.job optimize_vol0.job 
edit optimize_vol0.job (see below, specify VOL_0.0 as directory for save_lapw) 
optimize_vol0.job        (this will take some time, it produces the first c/a 

optimization for volume=V0) 
 
Now start a loop over the 5 c/a ratios: 
cp VOL_0.0/case_coa__-4.0.struct case_initial.struct 
# (optimize uses case_initial.struct if present) 
x optimize        (generate structure files for 4 other volumes with c/a ratio fixed to -4) 
cp optimize.job optimize_master.job (do this only the first time!) 
edit optimize_master.job  (see below, specify COA_-4.0 as dir for save_lapw) 
optimize.job        (this will take some time, it produces a volume optimization for a 

      given c/a ratio) 

go back and loop over all c/a ratios (change the save_lapw line accordingly).  

This is an example of optimize vol0.job : 



#!/bin/csh -f 
# 
# Loop over different coa’s at constant volume=V0 
foreach i ( \ 
 
 
 
 

) 
 
 
 
 
 

 
end 

case_coa___4.0  \  
case_coa___2.0  \  
case_coa___0.0  \  
case_coa__-2.0  \  
case_coa__-4.0 \ 
 
cp $i.struct case.struct 
min_lapw -I -j "run_lapw -I -fc 1. -renorm -i 40" set 
stat = $status 
if ($stat) then 
echo "ERROR status in" $i exit 1 
endif 
save_lapw –d VOL_0.0 $i



This is an example of optimize_master.job 
 
#!/bin/csh -f 
# 
# Loop over different volumes at constant c/a 
foreach i ( \ 

case_vol___4.0 \  
case_vol___2.0 \  
case_vol__-2.0 \  
case_vol__-4.0 \ 

) 
cp $i.struct case.struct 
min_lapw -I -j "run_lapw -I -fc 1. -renorm -i 40" set stat = 
$status 
if ($stat) then 
echo "ERROR status in" $i exit 1 
endif 
save_lapw –d COA-4.0 $i 
end 

At the end you should have directory VOL_0.0 (with a set of c/a ratios, each of them with optimized 
internal positions) and five COA_x.0 directories (each with a set of 4 volumes; 

V=0 is in VOL_0.0, and you probably want to copy (move) them into the appropriate COA 
directories). 
 
PS: The reason for this slightly complicated setup is saving of time. For a given c/a ratio one performs 
first an optimization of the internal parameters. The subsequent volume variation uses these optimized 
struct files because the internal coordinates usually change much less with volume than with c/a (less 
min steps necessary). 
 
6. What can go wrong (and perhaps what to do about it) 
 
The code will always find better values of the energy, but how well it will do this depends on how 
well the user has constructed the base lapw calculation and how accurately the forces are calculated. 
The most common problem is that the calculation has not adequately converged, in which case the 
energies and forces can be inconsistent and the optimization will stagnate (mostly for spin-polarized 
cases). At the current moment the standard method is to just check for consistency of the forces, but 
sometimes this is not enough and either (or both) the core charges and the plane wave components are 
not fully converged. A simple fix is to converge the scf-cycle with multiple convergence criteria, for 
instance 
 
min -I -j ”runsp_lapw –I –i 80 –cc 0.001 –ec 0.0001 –fc 1.0” 
 
Sometimes the optimization will take several good steps, then there may be a warning about the 
curvature condition and after this for several steps the convergence may be very slow. What is 
happening is that the Hessian has changed rather a lot, and it is taking the BFGS several cycles to 
update the Hessian to a more reasonable value. It may be better to stop the optimization and do a clean 
restart (remove .minrestart, .min_hess and case.tmpM files), alternatively just be patient. 
 
One issue that can require care is when you see a warning about overlapping spheres. It may be that 



the algorithm has just been too ambitious and taken too large a step which would bring atoms too 
close together (it is not that smart). However, it may be that you have RMT’s which are too large. In 
general you want to have the RMT’s about 5-10% smaller than you expect the optimum final values to 
be to allow more freedom for movement of the atoms. If you see the warning only once that is not a 
problem; if you see it repeatedly you should probably reduce your RMT’s using the reduce_rmt or 
clminter codes. 
 
It is worth emphasizing that the symmetry of your structure is something which is a- priori 
information for the calculations. If you choose too low a symmetry the calculation may give you in 
the end a lower-symmetry structure; if you pick too high the opposite. In certain cases you may want 
at the end to deliberately reduce the symmetry and rerun a calculation. However, be careful since 
numerical errors may well give you instabilities and hence prefer an unphysically lower symmetry 
structure. 
 

7. What would be nice to add (wish list) 
 
1) The better the initial approximation to the Hessian, the faster the convergence will be. At the 
moment an “adequate” initial approximation for the diagonal elements is used. There are many ways 
one can envisage creating a better initial approximation, ranging from a simple spring-model to 
something more complicated such as pair-wise interactions. These do not have to be exceptionally 
accurate, but would almost certainly be an improvement. 
 
2) The PORT routine (and many existing optimization routines) work on the assumption that 
calculating the gradient (forces in Wien2k) is CPU expensive, whereas calculating the function value 
(energy) is not. As a consequence they tend to only use function values in many cases, for instance 
when estimating whether a step is acceptable. In fact, calculating the gradient is almost free in 
Wien2k. While it would not be trivial, elements of the decision making routines in port could possibly 
be improved to exploit the free gradient information. In addition, it might be useful to exploit the 
gradient information available from bad steps (energy increasing) to update the Hessian matrix, and 
thereby improve the overall convergence speed. 
 
3) No attempt has been made to tweak some of the internal “tuning” parameters within port (buried 
in the initialization routines). Someone who has plenty of CPU time available might want to play with 
these, perhaps find a more appropriate combination for DFT problems. 


