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I. INTRODUCTION

Calculation of the density (or ’population’) matrix n̂ was implemented to WIEN2k in connection with the LDA+U
method. Corresponding program package is SRC lapwdm. Later we realized that the density matrix may be simply
used to calculate the expectation value of any ’on site’ operator X̂ by taking the trace < X >= Tr(n̂X̂+) (hermitean

conjugate of X̂ appears because of the definition of n̂ used in WIEN2k - see section III A). This is especially useful
for calculation of the on site contributions from the spin (Bdip)and orbital (Borb) moments to the hyperfine field. In
2006 the calculation of < X > was reanalysed, reprogrammed and this report was written.

II. GENERAL SCHEME

Hyperfine field on a nuclei of an atom may be written as

Bhf = Bc + Bdip + Borb + Blat, (1)

where Bc is the Fermi contact term, Bdip is the dipolar field from the on-site spin density, Borb is the field associated
with the on-site orbital moment. Blat is classical dipolar field from all other atoms in the system that carry the
magnetic moment and its calculation is described in detail in [1]. Calculation of Bc is performed in standard spin-
polarized WIEN2k calculation. Below we describe the calculation of Bc, Bdip and Borb as given by Blügel et al. [2]
(B).

The energy of the interaction of nuclear magnetic moment ~µI with the orbital moment ~l of an electron localized on

atom in question (~l is in units of ~) is (B, eq.24)

Eorb = −
e

mc
~µI 〈Φ|

S(r)

r3
~l |Φ〉 (2)

where Φ is the large component of the relativistic wave function, m is the electron mass, S(r) is reciprocal of the
relativistic mass enhancement (B, eq.21):

S(r) =

[

1 +
ǫ − V (r)

2mc2

]−1

. (3)

The energy of dipolar interaction of nuclear spin with the electron spin magnetic moment ~µ is (B, eq.26)

Edip = 〈Φ|
S(r)

r3
[~µ ~µI − 3(~µ ~̂r )(~µI

~̂r )]|Φ〉; ~̂r = ~r/r. (4)

We now use that µB = e~/2mc and ~µ = 2µB~s, ~s being the electron spin. Eqs. (5, 6) then reduce to:

Eorb = −2~µI µB〈Φ|
S(r)

r3
~l |Φ〉 (5)
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Edip = 2µB ~µI〈Φ|
S(r)

r3

[

~s − 3(~s ~̂r) ~̂r
]

|Φ〉. (6)

The contact interaction is (B 32)

Ec = −
8π

3
µB ~µI ~mav; ~mav =

∫

dr′δT (r′)~m(r′), (7)

where

~m(r′) = 〈Φ|~σ δ(~r − ~r′)|Φ〉 (8)

σ are the Pauli matrices,

δT (r) =
1

4πr2

rT /2

[(1 + ǫ/2mc2)r + rT /2]
(9)

rT = Ze2/mc2 is the Thomas radius.

Energy of the nuclear magnetic moment in an external magnetic field ~B is

Eext = −~µI
~B. (10)

Comparing this equation with (5, 6, 7) we get the expressions for the hyperfine fields ~Borb, ~Bdip and ~Bc:

~Borb = 2µB〈Φ|
S(r)

r3
~l |Φ〉 (11)

~Bdip = 2µB〈Φ|
S(r)

r3

[

3(~s ~̂r) ~̂r − ~s
]

|Φ〉, (12)

~Bc =
8π

3
µB ~mav (13)

In Blügel et al. formulation contact field is parallel to the spin density on nucleus.

Assuming that ~Bdip arises from electrons with orbital moment l, (12) may be recast by using the equivalent operators
( Ref. [3], 17.43, 17.44).

3(~s ~̂r)~̂r − ~s ,−→
2

(2l + 3)(2l − 1)

[

l(l + 1)~s −
3

2
(~l ~s)~l −

3

2
~l (~l ~s)

]

(14)

which gives

~Bdip =
4µB

(2l + 3)(2l − 1)
〈Φ|

S(r)

r3

[

l(l + 1)~s −
3

2
(~l ~s)~l −

3

2
~l (~l ~s)

]

|Φ〉 (15)

The projections of ~Borb, ~Bdip on the quantization axis ζ are

Borb
ζ = 2µB〈Φ|

S(r)

r3
lζ |Φ〉, (16)

Bdip
ζ =

4µB

(2l + 3)(2l − 1)
〈Φ|

S(r)

r3

[

l(l + 1)sζ −
3

2
(~l ~s) lζ −

3

2
lζ (~s~l )

]

|Φ〉 (17)
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A. Bc in WIEN code

Bc is calculated by program mixer. First, the subroutine hyper calculates the electron density hyperf at the
spherical slab around the nucleus

hyperf =
qel

4
3π(r3

T − r3
1)

, (18)

where qel is number of electrons in the spherical slab

qel =

∫ rT

r1

ρ00(r)dr (19)

ρ00 is the spherical component of the radial density, rT is Thomas radius, r1 is the first point in spherical mesh of
given atom. hyperf has three indexes: hyperf(atom, elc, spin), elc= 1,2,3,4 correspond to valence, semicore, core
and total density, spin=1,2 corresponds to ↑, ↓. Afterwards in the main program mixer Bc is calculated in kG:

Bc(atom, elc) = 524.3 [hyperf(atom, elc, 1)− hyperf(atom, elc, 2)] . (20)

III. Borb AND Bdip IN WIEN2K

Equations (11, 15) require evaluation of the mean value of a single particle operator X̂(r,~l, ~s) that belongs to a
specific atom. We’ll neglect any contributions beyond corresponding atomic sphere. Total mean value is then the sum
over orbital numbers (note that we neglect the contribution nondiagonal in l, i.e. the crossterms 〈l, m|X̂|l′m′〉; l 6= l′).
The population matrix that is calculated by the program lapwdm may then be used to evaluate the mean value.

A. Population matrix

In the atomic spheres the basis functions are atomic-like. As a consequence their angular part is described by
spherical functions Ylm(r̂). The Kohn-Sham eigenfunctions ϕi are linear combinations of the basis functions, thus
in a given atomic sphere they may be represented as linear combinations of Ylm(r̂) too. The population matrix n̂l

is defined as an operator in the |l, m, σ > subspace (ml = −l, ...l; σ = ±1/2) of the atomic-like states. The matrix
elements of n̂l as calculated in WIEN2k are (cf. SRC lapwdm/xsplt.f):

n̂l,mσ,m′σ′ =
∑

εi≤EF

〈l, m′, σ′|ϕi〉〈ϕi|l, m, σ〉. (21)

Note that n̂WIEN2k defined in this way is hermitean conjugate to the population matrix introduced by Shick et al.

([4] eq. 12). The population matrix is hermitean: nl,mσ,m′σ′ = (nl,m′σ′,mσ)∗. The cross terms σ = ∓1/2, σ′ = ±1/2
are nonzero when the spin-orbit interaction is present or the system has noncollinear spins. In WIEN the population
matrix is calculated in the local coordinate system of given site.

B. Mean value of on-site operators

The mean value of the single particle operator X̂ may be expressed as

〈Φ|X̂ |Φ〉 =
∑

εi≤EF

〈ϕi|X̂|ϕi〉. (22)
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Assuming that X̂ is nonzero within the atomic sphere only and neglecting the terms nondiagonal in l, this may be
rewriten as

∑

εi≤EF

σσ′

∑

lmm′

〈ϕi|lmσ〉〈lmσ|X̂|lm′σ′〉〈lm′σ′|ϕi〉 =

σσ′

∑

lmm′

X̂lmσ,lm′σ′

∑

εi≤EF

〈ϕi|lmσ〉〈lm′σ′|ϕi〉 = (23)

σσ′

∑

lmm′

X̂lmσ,lm′σ′ n̂l,m′σ′,mσ =
∑

l

Tr (n̂+
l X̂) =

∑

l

Tr (X̂+ n̂l).

Again note that hermitean conjugate of n̂ appears in above expression because of the definition (21). If more

conventional definition of n̂ as in [4] would be used 〈X̂〉 =
∑

l Tr (n̂lX̂).

IV. IMPLEMENTATION TO WIEN2K

A. Population matrix

Population matrices n̂l are calculated by the package LAPWDM. The input data are described in Table I.
The principal subroutine is l2main that is shortened and modified version of l2main of the LAPW2 package. l2main

calls subroutine xsplt that calculates the unsymmetrized population matrix denoted there as xqtl

xqtl(ly, lpy, mu, ii, nd) =
∑

εi≤EF

〈ϕi|lm
′σ′〉〈lmσ|ϕi〉 (24)

where mu is index of equivalent atom, nd = 1..Nl is index, specifying the orbital number. Indices ly = m+ l+1, lpy =
m′ + l + 1 numerates m, m′, acquiring values 1 ≤ ly, lpy,≤ 2l + 1. ii is the spin index in the calculation with the
spin-orbit:
ii = 1, 2, 3 corresponds to the sequence 〈↑ | ↑〉 , 〈↑ | ↓〉 , 〈↓ | ↓〉.

Note that because complete calculation of xqtl is done within the loop over the atom types, xqtl has no index
specifying the type of the atom.

Matrix xqtl is then symmetrized by applying to it all symmetry operations as listed in struct file, summing the
results and dividing it by the number of symmetry operations. The details of symmetrization depend on whether
calculation is with or without the s-o coupling and whether it is spin-polarized or not.

The output of standard LAPWDM calculation are the matrices ˆxqtl = n̂l, the mean value of spin and orbital

operator 〈~s 〉, 〈~l 〉 and their projection on the direction of magnetization (for s-o calculation) as specified in case.inso
file. More information may be printed if iprint = 0 in lapwdm.f is changed to iprint = n and the package is recompiled.
For bigger n bigger output is obtained.

In WIEN2k the basis functions |lmσ〉 inside atomic spheres in general consist of four terms

|lmσ〉 =

4
∑

j=1

d
(~k)
lmσ,ju

(σ)
l,j (r)Ylm(r̂), (25)

where j=1 corresponds to solution of atomic Dirac equation, j=2 is its energy derivative, j=3,4 corresppond to local

orbitals. Coefficients of the expansion depend on the ~k point. When calculating matrix n̂ the radial integrals

rimat(l, j, j
′, σ, σ′) =

∫ RMT

0

u
(σ)
l,j (r)u

(σ′)
l,j′ (r) r2dr (26)

must be evaluated. This is done in subroutine radint outside the loop over ~k points and eigenvalues. When calculating
〈X̂〉 again radint is used and instead of above integrals the integrals

rimat(l, j, j
′, σ, σ′) =

∫ RMT

0

u
(σ)
l,j (r)X(r)u

(σ′)
l,j′ (r) r2dr (27)

are computed.
Calculation of Tr(X̂n̂+

l ) is performed in subroutine output of LAPWDM package.
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line parameter explanation

1 Emin only eigenfunctions with εi ≥ Emin will be considered

2 Natoms number of atom types for which n̂ will be calculated

3..Natoms iatom, Nl, (l1..lNl
) index of atom type, number of l′s, orb. numbers.

Natoms+3 krad, kls r-index and (l, s)-index identifying operator X̂.

TABLE I: Input data for LAPWDM. Last line is added only if calculation of X̂ mean value is required. Third line is repeated
Natom times, Emin is important in case when it is desirable to obtain n̂ separately for valence and semicore states (represented
by local orbitals).

krad X̂r kls X̂ls

1 Î 1 Î

2 Sr−3 P̂ 2 ŝζ

3 Sr−3 P̂ 3 l̂ζ

4 r−3 P̂ 4 (l̂ ŝ)

-11 1/r 5 l, s part of Bdip (cf. eq. 17)

-10-n 1/rn 6 l̂2ζ
10+n rn 7 approximation to l, s part of Bdip (eq. 29)

TABLE II: Operators corresponding to input krad (subroutine radint) and kls (couplx). P̂ is projector on the large component
of the relativistic wave function.

B. Mean value of operator X̂l

Operators in (16, 17) are products of |~r| and ~l, ~s dependent operators:

X̂ = X̂r X̂ls. (28)

For l fixed, the radial parts of the basis functions ul(r), u̇l(r), ev. local orbitals are m-independent. Providing that
in the relativistic correction (3) the energy ǫ is approximated by the center of the band, the radial and angular parts

of 〈X̂〉 (cf. eqs. 11, 12) may be calculated outside the loop over the eigenvectors. This is performed in subroutines

radint and couplx. The data krad, kls specifying X̂r, X̂ls are given in the last line of the input file. Possible values of
krad, kls and corresponding operators are listed in Table II. Any allowed krad could be combined with any allowed
kls so that e.g. krad = 1, kls = 2 corresponds to sζ operator.

In older than WIEN2k 06 releases to calculate Bdip
ζ it was assumed that ~l ‖ ~s ‖ ζ i.e. in the spin-orbit coupling

the cross term (l+s− + l−s+)/2 was neglected. (17) then reduces to:

Bdip
ζ =

2

(2l + 3)(2l − 1)
〈Φ|

S(r)

r3
sζ

[

l(l + 1) − 3 l2ζ
]

|Φ〉. (29)

This approximation to Bdip corresponds to krad = 4, kls = 7 (cf. Table II), but as demonstrated in the Appendix B
it might be too rough or even misleading..

To obtain the hyperfine fields from in T from the mean value of operators in Tab. 2, specified by krad = 3 or
krad = 4 and kls = 3, 5, 7 this mean value is multiplied by factor 12.5169.

To get more detailed output for 〈X̂〉 calculation the value of variable iprx should be nonzero (main program
lapwdm).

C. Approximations

Below the approximation made are summarized

• Relativistic mass enhancement is only approximatelly accounted for (Appendix A). Note that relativistic mass
enhancement was fully included in the AVERX program of WIEN97.

• Contributions from the interstitial and from 〈l||l′〉 terms were neglected.
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krad kls Borb T included

3 3 21.25088 relativistic mass enhancement

4 3 21.27513 no relativistic mass enhancement

TABLE III: Contribution Borb of orbital momentum to hyperfine field.

krad kls Bdip T included

3 5 -0.23792 relativistic mass enhancement, nondiagonal terms

4 5 -0.23820 no relativistic mass enhancement, nondiagonal terms

3 7 0.64983 relativistic mass enhancement, diagonal terms only

4 7 0.65057 no relativistic mass enhancement, diagonal terms only

TABLE IV: Contribution Bdip of on-site spin momentum to hyperfine field.

APPENDIX A: APPROXIMATE INCLUSION OF RELATIVISTIC MASS ENHANCEMENT

According to eq. 3 the relativistically enhanced electron mass is

M(r) = m

[

1 +
ǫ − V (r)

2mc2

]

. (A1)

The problem with implementation is that:

• Enhancement M is r dependent, consequently when calculating the matrix elements the integration from r=0
to r = RMT must be performed.

• M is energy dependent, as a consequence radial integration must be performed inside the loop over the eigen-
vectors.

This would make the inclusion of M computationally costly and also programming is then not straightforward. We
thus neglected the energy dispersion and put

ǫi(~k) ∼= El (A2)

where El is the energy used for the orbital number l and selected atom to obtain the radial part of the orbital. M is
then no longer energy dependent and the radial integrals can be calculated outside the loop over eigenvectors, as until
now. Only atpar.f and radint.f subroutines need to be slightly modified and increase of the CPU time is negligible.
Note that in atomic units m = 1. An alternative (not implemented) would be to assume that the enhancement is
small and use an approximation

S(r) = 1/M(r) = m

[

1 −
ǫ − V (r)

2mc2

]

. (A3)

APPENDIX B: TEST EXAMPLE - HEXAGONAL GADOLINIUM

Standard WIEN calculation using GGA (option 13 in gd.in0) + spin-orbit coupling ( ~M ||[001]) was performed. Unit

cell parameters a = 6.878606 a.u., c=10.923188 a.u. Number of ~k points in Brillouin zone was 2000, RMT kmax =7,
RMT (Gd)=3 a.u.

Converged magnetic moments were
µs(Gd)=7.208 µB, µs(4f)=6.7408 µB, µl(4f)=0.2301 µB.
Contact hyperfine field from the standard output Bc=29.224 T.
Values of Borb, Bdip are given in Table III, IV. To compare older calculations (up to WIEN2k 06) with better ones
(inclusion of relativistic mass enhancement, nondiagonal terms in Bdip) the calculation was performed for different
krad, kls. We checked that the results obtained with (krad,kls)=(4,3) and (4,7) are identical to results in WIEN2k 06
with (krad,kls)=(3,3) and (3,5).

It is seen from Tables III, IV that while relativistic mass enhancement has little effect, the inclusion of the
nondiagonal terms qualitatively changes Bdip. To analyze the reason for this difference we compare the calculation
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for krad=3 and kls=5 with calculation for krad=3 and kls=7. All matrices involved in calculations are real. The
matrix ñ of the radial part is the same in both cases:

Radial matrix
up dn

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
7.990 0.000 0.000 0.000 0.000 0.000 0.001 0.000 -0.347 0.000 0.000 0.000 0.000 0.000

0.000 7.971 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.464 0.000 0.000 0.000 0.000
0.000 0.000 7.965 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.516 0.000 0.000 0.000

0.000 0.000 0.000 7.960 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.550 0.000 0.000
0.000 0.000 0.000 0.000 7.964 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.497 0.000

0.000 0.000 0.000 0.000 0.000 7.971 0.000 -0.005 0.000 0.000 0.000 0.000 0.000 -0.398
0.001 0.000 0.000 0.000 0.000 0.000 7.997 0.000 0.003 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 -0.005 0.000 0.039 0.000 0.000 0.000 0.000 0.000 -0.072
-0.347 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.100 0.000 0.000 0.000 0.000 0.000

0.000 -0.464 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.077 0.000 0.000 0.000 0.000
0.000 0.000 -0.516 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.144 0.000 0.000 0.000

0.000 0.000 0.000 -0.550 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.147 0.000 0.000
0.000 0.000 0.000 0.000 -0.497 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.320 0.000

0.000 0.000 0.000 0.000 0.000 -0.398 0.000 -0.072 0.000 0.000 0.000 0.000 0.000 0.429

Matrix of the operator X̂ls = 2
(2l+3)(2l−1)

[

l(l + 1)~s − 3
2
~l (~l ~s ) − 3

2 (~l ~s )~l
]

, correspponding to kls=5 is

-0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.408 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.316 0.000 0.000 0.000 0.000

0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.115 0.000 0.000 0.000
0.000 0.000 0.000 0.267 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.115 0.000 0.000

0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.316 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.408

0.000 0.000 0.000 0.000 0.000 0.000 -0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.000 0.000 0.000 0.000 0.000 0.000

-0.408 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 -0.316 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.200 0.000 0.000 0.000 0.000
0.000 0.000 -0.115 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.267 0.000 0.000 0.000

0.000 0.000 0.000 0.115 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.200 0.000 0.000
0.000 0.000 0.000 0.000 0.316 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.408 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333

Diagonal operator corresponding to kls=7 2
(2l+3)(2l−1)sζ

[

l(l + 1) − 3 l2ζ

]

has the same diagonal elements, and zero

nondiagonal elements. Because both operators ñ and Xls are real and have the same simple structure the diagonal
elements of their product consist of two terms only:

(ñ+ X)msml,msml
= ñmsml,msml

Xmsml,msml
+ ñmsml,ms−1ml+1 Xms−1ml+1,msml

, (B1)

with the second term absent for kls=7.
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Below the diagonal elements and their sums are compared for kls=5 and kls=7.

kls=5
<-3||-3><-2||-2><-1||-1> <0||0> <1||1> <2||2> <3||3> sum total

up -31.566 1.836 20.686 25.773 17.968 -2.035 -33.365 -0.702
dn 0.162 1.771 1.642 0.265 -1.163 -1.967 -0.245 0.464 -0.238

kls=7

up -33.337 0.000 19.940 26.568 19.936 0.000 -33.365 -0.258
dn 0.162 0.000 -0.194 -0.481 -0.369 0.000 1.790 0.908 0.650

It is now clear that the big difference between calculation with the diagonal operator and the full operator originates
from the cancelation of the large diagonal elements - the resulting sum is by two orders of magnitude smaller compared
to the largest diagonal element.

Important conclusion is that the approximation for Bdip used in WIEN2k 06 and previous releases could be very
bad at least in cases when the spin-orbit coupling is not much smaller comparing to the exchange splitting.

APPENDIX C: NEW AND MODIFIED PARTS

Comparing to WIEN2k 06 release the following subroutines were modified
atpar, couplx, l2main, lapwdm, modules, radint, xsplt.
There are three new subroutines:
printx, xoper, xqproduct.
Subroutine couplx now calculate matrices of all components of spin and orbital momentum in crystal coordinate system
(sx, sy, sz, lx, ly, lz) and in coordinate system where quantization axis is ‖ to the magnetization (sξ, sη, sζ , lξ, lη, lζ).

xoper calculate desired matrices of X̂ls operator by multiplying sα and lα matrices. Any new operator may be added
there and also the new X̂(r) operator may be added by modifying subroutine radint.
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